October  2005, 12(5): 959-972. doi: 10.3934/dcds.2005.12.959

A generalization of Desch--Schappacher--Webb criteria for chaos

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

2. 

Wydział Matematyki Informatyki i Mechaniki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, Poland

Received  May 2004 Revised  July 2004 Published  February 2005

In [8] the authors proved that a linear dynamical system $\mathcal T$ on a Banach space $X$ is topologically chaotic if there exists a selection of eigenvectors of the generator of $\mathcal T$, that is analytic in some open set of a complex plane that meets the imaginary axis, and such that a non-degeneracy condition holds. In this paper we show that if we drop the last assumption, then $\mathcal T$ is still chaotic albeit in a possibly smaller, but still infinite-dimensional, $\mathcal T$-invariant subspace of $X$. Such kind of chaotic behaviour we shall call subspace chaos. We also present criteria that allow to rule out subspace chaos in certain dynamical systems and discuss simple but instructive examples where these criteria are applied to the birth, as well as the death, type systems of population dynamics.
Citation: Jacek Banasiak, Marcin Moszyński. A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 959-972. doi: 10.3934/dcds.2005.12.959
[1]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[2]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[3]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[4]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[5]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[6]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[8]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[9]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[10]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020072

[11]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[12]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[13]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[14]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[15]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[16]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[17]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[18]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[19]

Mohammed Elarbi Achhab. On observers and compensators for infinite dimensional semilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 131-142. doi: 10.3934/eect.2015.4.131

[20]

Marius Tucsnak. Preface to the special issue on control of infinite dimensional systems. Mathematical Control & Related Fields, 2019, 9 (4) : ⅰ-ⅱ. doi: 10.3934/mcrf.2019042

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]