
Previous Article
Properties of blowup solutions to a parabolic system with nonlinear localized terms
 DCDS Home
 This Issue

Next Article
A priori estimates and precise regularity for parabolic systems with discontinuous data
Attractors for nonautonomous 2d NavierStokes equations with normal external forces
1.  Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China, China 
[1] 
JeanPierre Raymond. Stokes and NavierStokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 15371564. doi: 10.3934/dcdsb.2010.14.1537 
[2] 
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multivalued process generated by reactiondiffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems  A, 2014, 34 (10) : 43434370. doi: 10.3934/dcds.2014.34.4343 
[3] 
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 1996, 2 (1) : 95110. doi: 10.3934/dcds.1996.2.95 
[4] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[5] 
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305312. doi: 10.3934/proc.2003.2003.305 
[6] 
Vena Pearl Bongolanwalsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous NavierStokes system. Discrete & Continuous Dynamical Systems  B, 2003, 3 (2) : 255262. doi: 10.3934/dcdsb.2003.3.255 
[7] 
Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D NavierStokesVoigt equations and their NavierStokes limit. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 375403. doi: 10.3934/dcds.2010.28.375 
[8] 
Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$continuous family of strong solutions to the Euler or NavierStokes equations with the NavierType boundary condition. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13531373. doi: 10.3934/dcds.2010.27.1353 
[9] 
Matthew Paddick. The strong inviscid limit of the isentropic compressible NavierStokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 26732709. doi: 10.3934/dcds.2016.36.2673 
[10] 
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the threedimensional NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 16111631. doi: 10.3934/dcds.2010.27.1611 
[11] 
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D NavierStokes equations:Ⅰ. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 23392350. doi: 10.3934/dcdsb.2017101 
[12] 
Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped NavierStokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 20852102. doi: 10.3934/dcds.2016.36.2085 
[13] 
Jie Liao, XiaoPing Wang. Stability of an efficient NavierStokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 153171. doi: 10.3934/dcdsb.2012.17.153 
[14] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[15] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 122. doi: 10.3934/dcdsb.2017149 
[16] 
Olivier Goubet, Wided Kechiche. Uniform attractor for nonautonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639651. doi: 10.3934/cpaa.2011.10.639 
[17] 
Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semiuniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 123. doi: 10.3934/dcdsb.2018058 
[18] 
P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1/2) : 423433. doi: 10.3934/dcds.2004.10.423 
[19] 
Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems  A, 2002, 8 (1) : 257265. doi: 10.3934/dcds.2002.8.257 
[20] 
Guangrong Wu, Ping Zhang. The zero diffusion limit of 2D NavierStokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems  A, 1999, 5 (3) : 631638. doi: 10.3934/dcds.1999.5.631 
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]