
Previous Article
A priori estimates and precise regularity for parabolic systems with discontinuous data
 DCDS Home
 This Issue

Next Article
Properties of blowup solutions to a parabolic system with nonlinear localized terms
Attractors for nonautonomous 2d NavierStokes equations with normal external forces
1.  Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China, China 
[1] 
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $NavierStokes equation. Communications on Pure & Applied Analysis, 2020, 19 (6) : 31373157. doi: 10.3934/cpaa.2020136 
[2] 
JeanPierre Raymond. Stokes and NavierStokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 15371564. doi: 10.3934/dcdsb.2010.14.1537 
[3] 
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multivalued process generated by reactiondiffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems  A, 2014, 34 (10) : 43434370. doi: 10.3934/dcds.2014.34.4343 
[4] 
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 1996, 2 (1) : 95110. doi: 10.3934/dcds.1996.2.95 
[5] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[6] 
Vena Pearl Bongolanwalsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous NavierStokes system. Discrete & Continuous Dynamical Systems  B, 2003, 3 (2) : 255262. doi: 10.3934/dcdsb.2003.3.255 
[7] 
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305312. doi: 10.3934/proc.2003.2003.305 
[8] 
Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D NavierStokesVoigt equations and their NavierStokes limit. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 375403. doi: 10.3934/dcds.2010.28.375 
[9] 
Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$continuous family of strong solutions to the Euler or NavierStokes equations with the NavierType boundary condition. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13531373. doi: 10.3934/dcds.2010.27.1353 
[10] 
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D NavierStokesVoigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020039 
[11] 
Linjie Xiong. Incompressible Limit of isentropic NavierStokes equations with Navierslip boundary. Kinetic & Related Models, 2018, 11 (3) : 469490. doi: 10.3934/krm.2018021 
[12] 
Matthew Paddick. The strong inviscid limit of the isentropic compressible NavierStokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 26732709. doi: 10.3934/dcds.2016.36.2673 
[13] 
Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped NavierStokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 20852102. doi: 10.3934/dcds.2016.36.2085 
[14] 
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the threedimensional NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 16111631. doi: 10.3934/dcds.2010.27.1611 
[15] 
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D NavierStokes equations:Ⅰ. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 23392350. doi: 10.3934/dcdsb.2017101 
[16] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[17] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[18] 
Jie Liao, XiaoPing Wang. Stability of an efficient NavierStokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 153171. doi: 10.3934/dcdsb.2012.17.153 
[19] 
Olivier Goubet, Wided Kechiche. Uniform attractor for nonautonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639651. doi: 10.3934/cpaa.2011.10.639 
[20] 
Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semiuniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 15351557. doi: 10.3934/dcdsb.2018058 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]