\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The circle and the solenoid

Abstract / Introduction Related Papers Cited by
  • In the paper, we discuss two questions about degree $d$ smooth expanding circle maps, with $d \ge 2$. (i) We characterize the sequences of asymptotic length ratios which occur for systems with Hölder continuous derivative. The sequence of asymptotic length ratios are precisely those given by a positive Hölder continuous function $s$ (solenoid function) on the Cantor set $C$ of $d$-adic integers satisfying a functional equation called the matching condition. In the case of the $2$-adic integer Cantor set, the functional equation is

    $ s (2x+1)= \frac{s (x)} {s (2x)}$ $1+\frac{1}{ s (2x-1)}-1. $

    We also present a one-to-one correspondence between solenoid functions and affine classes of exponentially fast $d$-adic tilings of the real line that are fixed points of the $d$-amalgamation operator. (ii) We calculate the precise maximum possible level of smoothness for a representative of the system, up to diffeomorphic conjugacy, in terms of the functions $s$ and $cr(x)=(1+s(x))/(1+(s(x+1))^{-1})$. For example, in the Lipschitz structure on $C$ determined by $s$, the maximum smoothness is $C^{1+\alpha}$ for $0 < \alpha \le 1$ if and only if $s$ is $\alpha$-Hölder continuous. The maximum smoothness is $C^{2+\alpha}$ for $0 < \alpha \le 1$ if and only if $cr$ is $(1+\alpha)$-Hölder. A curious connection with Mostow type rigidity is provided by the fact that $s$ must be constant if it is $\alpha$-Hölder for $\alpha > 1$.

    Mathematics Subject Classification: Primary: 37E10; Secondary: 37D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return