2006, 16(3): 541-561. doi: 10.3934/dcds.2006.16.541

On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind

1. 

Computing Center, The 4th Clinical Polyclinic of Voronezh City, Russia 394077, Voronezh, Lizyukova 24, Russian Federation

Received  January 2006 Revised  June 2006 Published  August 2006

We study the Cauchy problem with bounded continuous initial-value functions for the differential-difference equation

$\frac{\partial u}{\partial t}= \sum$nk,j,m=1$ a_{kjm}\frac{\partial^2u}{\partial x_k\partial x_j} (x_1,...,x_{m-1},x_m+h_{kjm},x_{m+1},...,x_n,t),$

assuming that the operator on the right-hand side of the equation is strongly elliptic and the coefficients $a_{kjm}$ and $h_{kjm}$ are real. We prove that this Cauchy problem has a unique solution (in the sense of distributions) and this solution is classical in ${\mathbb R}^n \times (0,+\infty),$ find its integral representation, and construct a differential parabolic equation with constant coefficients such that the difference between its classical bounded solution satisfying the same initial-value function and the investigated solution of the differential-difference equation tends to zero as $t\to\infty$.

Citation: Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541
[1]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[2]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[3]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[4]

Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005

[5]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[6]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[7]

N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119

[8]

Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure & Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587

[9]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[10]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[11]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[12]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

[13]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[14]

Changfeng Gui, Zhenbu Zhang. Spike solutions to a nonlocal differential equation. Communications on Pure & Applied Analysis, 2006, 5 (1) : 85-95. doi: 10.3934/cpaa.2006.5.85

[15]

Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989

[16]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[17]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[18]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[19]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[20]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]