April  2007, 17(2): 423-439. doi: 10.3934/dcds.2007.17.423

On the Burnside problem in Diff(M)

1. 

Dept. de Matematica, PUC-Rio, R. Marques de S. Vicente 225, Rio de Janeiro RJ CEP 22453-900, Brazil

2. 

Dept. de Matematica, CCE UEL, Campus Universitario, Caixa, Postal 6001 Londrina PR CEP 86051-990, Brazil

Received  December 2005 Revised  September 2006 Published  November 2006

In this paper we obtain some non-linear analogues of Schur's theorem asserting that a finitely generated subgroup of a linear group all of whose elements have finite order is, in fact, finite. The main result concerns groups of symplectomorphisms of certain manifolds of dimension $4$ including the torus $T^4$.
Citation: Julio C. Rebelo, Ana L. Silva. On the Burnside problem in Diff(M). Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 423-439. doi: 10.3934/dcds.2007.17.423
[1]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[2]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[3]

M. F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electronic Research Announcements, 1998, 4: 1-3.

[4]

Jan Prüss, Gieri Simonett. On the Muskat problem. Evolution Equations & Control Theory, 2016, 5 (4) : 631-645. doi: 10.3934/eect.2016022

[5]

Viorel Nitica, Andrei Török. On a semigroup problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2365-2377. doi: 10.3934/dcdss.2019148

[6]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics & Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

[7]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[8]

Annalisa Cesaroni, Matteo Novaga. The isoperimetric problem for nonlocal perimeters. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 425-440. doi: 10.3934/dcdss.2018023

[9]

Vincent Guyonne, Luca Lorenzi. Instability in a flame ball problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 315-350. doi: 10.3934/dcdsb.2007.7.315

[10]

Charles E. M. Pearce, Krzysztof Szajowski, Mitsushi Tamaki. Duration problem with multiple exchanges. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 333-355. doi: 10.3934/naco.2012.2.333

[11]

S. Dumont, Noureddine Igbida. On the collapsing sandpile problem. Communications on Pure & Applied Analysis, 2011, 10 (2) : 625-638. doi: 10.3934/cpaa.2011.10.625

[12]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[13]

Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1

[14]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems & Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[15]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[16]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[17]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[18]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[19]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[20]

Marek Rychlik. The Equichordal Point Problem. Electronic Research Announcements, 1996, 2: 108-123.

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]