2008, 20(1): 115-137. doi: 10.3934/dcds.2008.20.115

Entire solutions of singular elliptic inequalities on complete manifolds

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia

2. 

Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 29100 Milano, Italy

Received  December 2006 Revised  May 2007 Published  October 2007

We present some qualitative properties for solutions of singular quasilinear elliptic differential inequalities on complete Riemannian manifolds, such as the validity of the weak maximum principle at infinity, and non--existence results.
Citation: Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115
[1]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[2]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[3]

Filippo Gazzola. Critical exponents which relate embedding inequalities with quasilinear elliptic problems. Conference Publications, 2003, 2003 (Special) : 327-335. doi: 10.3934/proc.2003.2003.327

[4]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities . Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[5]

Takahiro Hashimoto. Pohozaev-Ôtani type inequalities for weak solutions of quasilinear elliptic equations with homogeneous coefficients. Conference Publications, 2011, 2011 (Special) : 643-652. doi: 10.3934/proc.2011.2011.643

[6]

José Carmona, Pedro J. Martínez-Aparicio. Homogenization of singular quasilinear elliptic problems with natural growth in a domain with many small holes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 15-31. doi: 10.3934/dcds.2017002

[7]

David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262-275. doi: 10.3934/proc.1998.1998.262

[8]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[9]

Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221

[10]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 477-494. doi: 10.3934/dcds.2009.23.477

[11]

Matteo Bonforte, Gabriele Grillo. Singular evolution on maniforlds, their smoothing properties, and soboleve inequalities. Conference Publications, 2007, 2007 (Special) : 130-137. doi: 10.3934/proc.2007.2007.130

[12]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[13]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations & Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[14]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[15]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[16]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[17]

Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743

[18]

Filippo Gazzola, Lorenzo Pisani. Remarks on quasilinear elliptic equations as models for elementary particles. Conference Publications, 2003, 2003 (Special) : 336-341. doi: 10.3934/proc.2003.2003.336

[19]

Abdelhakim Belghazi, Ferroudja Smadhi, Nawel Zaidi, Ouahiba Zair. Carleman inequalities for the two-dimensional heat equation in singular domains. Mathematical Control & Related Fields, 2012, 2 (4) : 331-359. doi: 10.3934/mcrf.2012.2.331

[20]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]