2010, 26(2): 737-765. doi: 10.3934/dcds.2010.26.737

Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth

1. 

Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China

2. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275

Received  December 2008 Revised  May 2009 Published  October 2009

In this paper we first study local phase diagram of an abstract parabolic differential equation in a Banach space such that the equation possesses an invariance structure under a local Lie group action. Next we use this abstract result to study a free boundary problem modeling the growth of non-necrotic tumors in the presence of inhibitors. This problem contains two reaction-diffusion equations describing the diffusion of the nutrient and the inhibitor, respectively, and an elliptic equation describing the distribution of the internal pressure. There is also an equation for the surface tension to govern the movement of the free boundary. By first performing some reduction processes to write this free boundary problem into a parabolic differential equation in a Banach space, and next using a new center manifold theorem established recently by Cui [8], and the abstract result mentioned above, we prove that under suitable conditions the radial stationary solution is locally asymptotically stable under small non-radial perturbations, and when these conditions are not satisfied then such a stationary solution is unstable. In the second case we also give a description of local phase diagram of the equation in a neighborhood of the radial stationary solution and construct its stable and unstable manifolds. In particular, we prove that in the unstable case, if the transient solution exists globally and is contained in a neighborhood of the radial stationary solution, then the transient solution will finally converge to a nearby radial stationary solution uniquely determined by the initial data.
Citation: Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737
[1]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[2]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[3]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[4]

Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2017213

[5]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[6]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[7]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[8]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[9]

Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380-385. doi: 10.3934/proc.2001.2001.380

[10]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[11]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[12]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[13]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[14]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[15]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[16]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[17]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[18]

Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759

[19]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[20]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]