2011, 29(1): 1-24. doi: 10.3934/dcds.2011.29.1

Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

Received  January 2010 Revised  July 2010 Published  September 2010

Non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations (VEk), are applied to prove the non-integrability of the Swinging Atwood's Machine for values of the parameter which can not be decided using first order variational equations (VE1).
Citation: Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,", Reprint of the 1972 edition. Dover Publications, (1972).

[2]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from , ().

[3]

J. Casasayas, A. Nunes and N. Tufillaro, Swinging Atwood's machine,, J. Physique, 51 (1990), 1693.

[4]

J. Martinet and J-P. Ramis, Théorie de Galois différentielle et resommation,, Computer Algebra and Differential Equations, (1989), 117.

[5]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples,, Regular and Chaotic Dynamics, 14 (2009), 323.

[6]

R. Martínez and C. Simó, Efficient numerical implementation of integrability criteria based on high order variational equations,, Preprint, (2010).

[7]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Progress in Mathematics vol. 179, 179 (1999).

[8]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems,, Methods and Applications of Analysis, 8 (2001), 33.

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian Obstructions to integrability of Hamiltonian systems II,, Methods and Applications of Analysis, 8 (2001), 97.

[10]

J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Scient. Éc. Norm. Sup. 4$^e$ série, 40 (2007), 845.

[11]

J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Diff. Equations, 129 (1996), 111. doi: doi:10.1006/jdeq.1996.0113.

[12]

J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill's Problem,, Ergodic Theory and Dynamical Systems, 25 (2005), 1237. doi: doi:10.1017/S0143385704001038.

[13]

O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood's Machine: Experimental and numerical results, theoretical study,, Physica D, 239 (2010), 1067. doi: doi:10.1016/j.physd.2010.02.017.

[14]

L. Schlesinger, "Handbuch der Theorie der Linearen Differentialgleichungen,", Reprint. Biblioteca Mathematica Teubneriana, (1968).

[15]

N. Tufillaro, Integrable motion of a swinging Atwood's machine,, Am. J. Phys., 54 (1986), 142. doi: doi:10.1119/1.14710.

[16]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I,, Funct. Anal. Appl., 16 (1982), 181. doi: doi:10.1007/BF01081586.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,", Reprint of the 1972 edition. Dover Publications, (1972).

[2]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from , ().

[3]

J. Casasayas, A. Nunes and N. Tufillaro, Swinging Atwood's machine,, J. Physique, 51 (1990), 1693.

[4]

J. Martinet and J-P. Ramis, Théorie de Galois différentielle et resommation,, Computer Algebra and Differential Equations, (1989), 117.

[5]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples,, Regular and Chaotic Dynamics, 14 (2009), 323.

[6]

R. Martínez and C. Simó, Efficient numerical implementation of integrability criteria based on high order variational equations,, Preprint, (2010).

[7]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Progress in Mathematics vol. 179, 179 (1999).

[8]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems,, Methods and Applications of Analysis, 8 (2001), 33.

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian Obstructions to integrability of Hamiltonian systems II,, Methods and Applications of Analysis, 8 (2001), 97.

[10]

J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Scient. Éc. Norm. Sup. 4$^e$ série, 40 (2007), 845.

[11]

J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Diff. Equations, 129 (1996), 111. doi: doi:10.1006/jdeq.1996.0113.

[12]

J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill's Problem,, Ergodic Theory and Dynamical Systems, 25 (2005), 1237. doi: doi:10.1017/S0143385704001038.

[13]

O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood's Machine: Experimental and numerical results, theoretical study,, Physica D, 239 (2010), 1067. doi: doi:10.1016/j.physd.2010.02.017.

[14]

L. Schlesinger, "Handbuch der Theorie der Linearen Differentialgleichungen,", Reprint. Biblioteca Mathematica Teubneriana, (1968).

[15]

N. Tufillaro, Integrable motion of a swinging Atwood's machine,, Am. J. Phys., 54 (1986), 142. doi: doi:10.1119/1.14710.

[16]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I,, Funct. Anal. Appl., 16 (1982), 181. doi: doi:10.1007/BF01081586.

[1]

Primitivo Acosta-Humánez, David Blázquez-Sanz. Non-integrability of some hamiltonians with rational potentials. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 265-293. doi: 10.3934/dcdsb.2008.10.265

[2]

Andrew N. W. Hone, Michael V. Irle. On the non-integrability of the Popowicz peakon system. Conference Publications, 2009, 2009 (Special) : 359-366. doi: 10.3934/proc.2009.2009.359

[3]

Juan J. Morales-Ruiz, Sergi Simon. On the meromorphic non-integrability of some $N$-body problems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1225-1273. doi: 10.3934/dcds.2009.24.1225

[4]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[5]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[6]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[7]

Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965

[8]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[9]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[10]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[11]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[12]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[13]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[14]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[15]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[16]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[17]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[18]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[19]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[20]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]