2011, 29(3): 1197-1204. doi: 10.3934/dcds.2011.29.1197

Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups

1. 

Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA 19383, United States

Received  January 2010 Revised  May 2010 Published  November 2010

Assume that $X$ is a hyperbolic basic set for $f:X\to X$. We show new examples of Lie group fibers $G$ for which, in the class of $C^r, r>0,$ $G$-extensions of $f$, those that are transitive are open and dense. The fibers are semidirect products of compact and nilpotent groups.
Citation: Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197
References:
[1]

D. Z. Djoković, The union of compact subgroups of a connected locally compact group,, Math. Zeitschrift, 158 (1978), 99. doi: 10.1007/BF01320860.

[2]

M. Field, I. Melbourne and A. Török, Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets,, Ergod. Theory Dynam. Systems, 25 (2005), 517. doi: 10.1017/S0143385704000355.

[3]

M. Goto, A theorem on compact semi-simple groups,, J. Math. Soc. Japan, 1 (1949), 270. doi: 10.2969/jmsj/00130270.

[4]

M. I. Kargapolov and J. I. Merzljakov, Fundamentals of the theory of groups,, Graduate Texts in Mathematics, 62 (1979).

[5]

M. Kuranishi, On everywhere dense embedding of free groups in Lie groups,, Nagoya Math. J., 2 (1951), 63.

[6]

I. Melbourne and M. Nicol, Stable transitivity of Euclidean group extensions,, Ergod. Theory Dynam. Systems, 23 (2003), 611. doi: 10.1017/S0143385702001554.

[7]

I. Melbourne, V. Niţică and A. Török, Stable transitivity of certain noncompact extensions of hyperbolic systems,, Annales Henri Poincaré, 6 (2005), 725. doi: 10.1007/s00023-005-0221-0.

[8]

I. Melbourne, V. Niţică and A. Török, A note about stable transitivity of noncompact extensions of hyperbolic systems,, Discrete Contin. Dynam. Systems, 14 (2006), 355.

[9]

I. Melbourne, V. Niţică and A. Török, Transitivity of Euclidean-type extensions of hyperbolic systems,, Ergod. Theory Dynam. Systems, 29 (2009), 1585. doi: 10.1017/S0143385708000886.

[10]

I. Melbourne, V. Niţică and A. Török, Transitivity of Heisenberg group extensions of hyperbolic systems,, to appear in Ergod. Theory Dynam. Systems., ().

[11]

V. Niţică, Examples of topologically transitive skew-products,, Discrete Contin. Dynam. Systems, 6 (2000), 351.

[12]

V. Niţică and M. Pollicott, Transitivity of Euclidean extensions of Anosov diffeomorphisms,, Ergod. Theory Dynam. Systems, 25 (2005), 257. doi: 10.1017/S0143385704000471.

[13]

V. Niţică and A. Török, An open and dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one,, Topology, 40 (2001), 259. doi: 10.1016/S0040-9383(99)00060-9.

[14]

J. Schreier and S. Ulam, Sur le nombre de generateurs d’un groupe topologique compact et connexe,, Fundamenta Math., 24 (1935), 302.

[15]

T.-S. Wu, The union of compact subgroups of an analytic group,, Trans. Amer. Math. Soc., 331 (1992), 869. doi: 10.2307/2154147.

show all references

References:
[1]

D. Z. Djoković, The union of compact subgroups of a connected locally compact group,, Math. Zeitschrift, 158 (1978), 99. doi: 10.1007/BF01320860.

[2]

M. Field, I. Melbourne and A. Török, Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets,, Ergod. Theory Dynam. Systems, 25 (2005), 517. doi: 10.1017/S0143385704000355.

[3]

M. Goto, A theorem on compact semi-simple groups,, J. Math. Soc. Japan, 1 (1949), 270. doi: 10.2969/jmsj/00130270.

[4]

M. I. Kargapolov and J. I. Merzljakov, Fundamentals of the theory of groups,, Graduate Texts in Mathematics, 62 (1979).

[5]

M. Kuranishi, On everywhere dense embedding of free groups in Lie groups,, Nagoya Math. J., 2 (1951), 63.

[6]

I. Melbourne and M. Nicol, Stable transitivity of Euclidean group extensions,, Ergod. Theory Dynam. Systems, 23 (2003), 611. doi: 10.1017/S0143385702001554.

[7]

I. Melbourne, V. Niţică and A. Török, Stable transitivity of certain noncompact extensions of hyperbolic systems,, Annales Henri Poincaré, 6 (2005), 725. doi: 10.1007/s00023-005-0221-0.

[8]

I. Melbourne, V. Niţică and A. Török, A note about stable transitivity of noncompact extensions of hyperbolic systems,, Discrete Contin. Dynam. Systems, 14 (2006), 355.

[9]

I. Melbourne, V. Niţică and A. Török, Transitivity of Euclidean-type extensions of hyperbolic systems,, Ergod. Theory Dynam. Systems, 29 (2009), 1585. doi: 10.1017/S0143385708000886.

[10]

I. Melbourne, V. Niţică and A. Török, Transitivity of Heisenberg group extensions of hyperbolic systems,, to appear in Ergod. Theory Dynam. Systems., ().

[11]

V. Niţică, Examples of topologically transitive skew-products,, Discrete Contin. Dynam. Systems, 6 (2000), 351.

[12]

V. Niţică and M. Pollicott, Transitivity of Euclidean extensions of Anosov diffeomorphisms,, Ergod. Theory Dynam. Systems, 25 (2005), 257. doi: 10.1017/S0143385704000471.

[13]

V. Niţică and A. Török, An open and dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one,, Topology, 40 (2001), 259. doi: 10.1016/S0040-9383(99)00060-9.

[14]

J. Schreier and S. Ulam, Sur le nombre de generateurs d’un groupe topologique compact et connexe,, Fundamenta Math., 24 (1935), 302.

[15]

T.-S. Wu, The union of compact subgroups of an analytic group,, Trans. Amer. Math. Soc., 331 (1992), 869. doi: 10.2307/2154147.

[1]

Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81

[2]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[3]

John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293

[4]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[5]

Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68.

[6]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[7]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[8]

Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355

[9]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[10]

Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[11]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[12]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[13]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[14]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[15]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[16]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[17]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[18]

Joachim Escher, Rossen Ivanov, Boris Kolev. Euler equations on a semi-direct product of the diffeomorphisms group by itself. Journal of Geometric Mechanics, 2011, 3 (3) : 313-322. doi: 10.3934/jgm.2011.3.313

[19]

Lennard F. Bakker, Pedro Martins Rodrigues. A profinite group invariant for hyperbolic toral automorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1965-1976. doi: 10.3934/dcds.2012.32.1965

[20]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]