January  2011, 29(1): 169-192. doi: 10.3934/dcds.2011.29.169

Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force

1. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, P. le Europa 1, I-34127 Trieste, Italy

2. 

Departamento de Matematica Aplicada, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain

Received  November 2009 Revised  February 2010 Published  September 2010

We consider planar systems driven by a central force which depends periodically on time. If the force is sublinear and attractive, then there is a connected set of subharmonic and quasi-periodic solutions rotating around the origin at different speeds; moreover, this connected set stretches from zero to infinity. The result still holds allowing the force to be attractive only in average provided that an uniformity condition is satisfied and there are no periodic oscillations with zero angular momentum. We provide examples showing that these assumptions cannot be skipped.
Citation: Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169
References:
[1]

A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications,", Birkhäuser Boston, (1993).

[2]

J.C. Alexander, A primer on connectivity, Fixed point theory (Sherbrooke, Que., 1980), pp. 455-483,, Lecture Notes in Math. 886, (1981).

[3]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," 2nd edition,, Graduate Texts in Mathematics 60, (1978).

[4]

E. N. Dancer, On the use of asymptotics in nonlinear boundary value problems,, Ann. Mat. Pura Appl. (4), 131 (1982), 167. doi: doi:10.1007/BF01765151.

[5]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).

[6]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: doi:10.1016/j.jde.2007.11.005.

[7]

P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials,, Differential Integral Equations, 3 (1990), 1139.

[8]

J. Leray and J. Schauder, Topologie et équations fonctionnelles (French),, Ann. Sci. École Norm. Sup. (3), 51 (1934), 45.

[9]

J. Mawhin, Leray-Schauder continuation theorems in the absence of a priori bounds,, Topol. Methods Nonlinear Anal., 9 (1997), 179.

[10]

J. Mawhin, C. Rebelo and F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems,, Communications in Contemporary Mathematics, 2 (2000), 87.

[11]

W. Magnus and S. Winkler, "Hill's Equation,", Dover Publ., (1979).

[12]

I. Newton, "Principes Mathématiques de la Philosophie Naturelle," 2nd section,, Livre Premier, (1759).

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications,", Birkhäuser Boston, (1993).

[2]

J.C. Alexander, A primer on connectivity, Fixed point theory (Sherbrooke, Que., 1980), pp. 455-483,, Lecture Notes in Math. 886, (1981).

[3]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," 2nd edition,, Graduate Texts in Mathematics 60, (1978).

[4]

E. N. Dancer, On the use of asymptotics in nonlinear boundary value problems,, Ann. Mat. Pura Appl. (4), 131 (1982), 167. doi: doi:10.1007/BF01765151.

[5]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).

[6]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: doi:10.1016/j.jde.2007.11.005.

[7]

P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials,, Differential Integral Equations, 3 (1990), 1139.

[8]

J. Leray and J. Schauder, Topologie et équations fonctionnelles (French),, Ann. Sci. École Norm. Sup. (3), 51 (1934), 45.

[9]

J. Mawhin, Leray-Schauder continuation theorems in the absence of a priori bounds,, Topol. Methods Nonlinear Anal., 9 (1997), 179.

[10]

J. Mawhin, C. Rebelo and F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems,, Communications in Contemporary Mathematics, 2 (2000), 87.

[11]

W. Magnus and S. Winkler, "Hill's Equation,", Dover Publ., (1979).

[12]

I. Newton, "Principes Mathématiques de la Philosophie Naturelle," 2nd section,, Livre Premier, (1759).

[1]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[2]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[3]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[4]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[5]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[6]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[9]

Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079

[10]

Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449

[11]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[12]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[13]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[14]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[15]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[16]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[17]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

[18]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[19]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[20]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]