2011, 30(4): 1139-1144. doi: 10.3934/dcds.2011.30.1139

A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature

1. 

LAMFA – CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue Saint-Leu 80039 Amiens CEDEX 1, France

2. 

Università degli Studi di Milano, Dipartimento di Matematica Via Saldini, 50, 20133 Milano

Received  February 2010 Revised  August 2010 Published  May 2011

N/A
Citation: Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139
References:
[1]

Marcel Berger, Paul Gauduchon and Edmond Mazet, "Le Spectre d'une Variété Riemannienne,", Lecture Notes in Mathematics, 194 (1971).

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences,, Comm. Pure Appl. Math., 47 (1994), 1457. doi: 10.1002/cpa.3160471103.

[3]

Alberto Farina, Yannick Sire and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, preprint (2008)., (2008).

[4]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808. doi: 10.1016/j.aim.2010.05.008.

[5]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1983).

[6]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679. doi: 10.1002/cpa.3160380515.

[7]

L. E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421. doi: 10.1007/BF02786729.

[8]

Vladimir E. Shklover, Schiffer problem and isoparametric hypersurfaces,, Rev. Mat. Iberoamericana, 16 (2000), 529.

[9]

René P. Sperb, "Maximum Principles and their Applications,", Mathematics in Science and Engineering, 157 (1981).

[10]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of Differential Geometry, (2000), 963.

[11]

Jiaping Wang, "Lecture Notes on, Geometric Analysis, ().

show all references

References:
[1]

Marcel Berger, Paul Gauduchon and Edmond Mazet, "Le Spectre d'une Variété Riemannienne,", Lecture Notes in Mathematics, 194 (1971).

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences,, Comm. Pure Appl. Math., 47 (1994), 1457. doi: 10.1002/cpa.3160471103.

[3]

Alberto Farina, Yannick Sire and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, preprint (2008)., (2008).

[4]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature,, Adv. Math., 225 (2010), 2808. doi: 10.1016/j.aim.2010.05.008.

[5]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1983).

[6]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, Comm. Pure Appl. Math., 38 (1985), 679. doi: 10.1002/cpa.3160380515.

[7]

L. E. Payne, Some remarks on maximum principles,, J. Analyse Math., 30 (1976), 421. doi: 10.1007/BF02786729.

[8]

Vladimir E. Shklover, Schiffer problem and isoparametric hypersurfaces,, Rev. Mat. Iberoamericana, 16 (2000), 529.

[9]

René P. Sperb, "Maximum Principles and their Applications,", Mathematics in Science and Engineering, 157 (1981).

[10]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations,, Handbook of Differential Geometry, (2000), 963.

[11]

Jiaping Wang, "Lecture Notes on, Geometric Analysis, ().

[1]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[2]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[3]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[4]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[5]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[6]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[7]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[8]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[9]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[10]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[11]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

[12]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[13]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[14]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[15]

Emmanuel Hebey and Frederic Robert. Compactness and global estimates for the geometric Paneitz equation in high dimensions. Electronic Research Announcements, 2004, 10: 135-141.

[16]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[17]

Joanna Balbus, Janusz Mierczyński. Time-averaging and permanence in nonautonomous competitive systems of PDEs via Vance-Coddington estimates. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1407-1425. doi: 10.3934/dcdsb.2012.17.1407

[18]

Alireza Bahiraie, A.K.M. Azhar, Noor Akma Ibrahim. A new dynamic geometric approach for empirical analysis of financial ratios and bankruptcy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 947-965. doi: 10.3934/jimo.2011.7.947

[19]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[20]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]