• Previous Article
    Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
  • DCDS Home
  • This Issue
  • Next Article
    The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms
April  2011, 30(1): 115-135. doi: 10.3934/dcds.2011.30.115

Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay

1. 

Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P.2390 Marrakech, Morocco

2. 

African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg 7945, South Africa

Received  January 2010 Revised  July 2010 Published  February 2011

This work aims to investigate the regularity and the stability of the solutions for a class of partial functional differential equations with infinite delay. Here we suppose that the undelayed part generates an analytic semigroup and the delayed part is continuous with respect to fractional powers of the generator. First, we give a new characterization for the infinitesimal generator of the solution semigroup, which allows us to give necessary and sufficient conditions for the regularity of solutions. Second, we investigate the stability of the semigroup solution. We proved that one of the fundamental and wildly used assumption, in the computing of eigenvalues and eigenvectors, is an immediate consequence of the already considered ones. Finally, we discuss the asymptotic behavior of solutions.
Citation: Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115
References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709.  doi: 10.1016/j.na.2009.01.008.  Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545.   Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995).   Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000).   Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690.  doi: 10.1016/j.na.2005.07.017.  Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008.  doi: 10.1016/j.na.2008.08.010.  Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11.   Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991).   Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565.  doi: 10.1016/S0362-546X(97)00315-5.  Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323.   Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983).   Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397.  doi: 10.1016/0022-247X(76)90052-4.  Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129.  doi: 10.2307/1998809.  Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996).   Google Scholar

show all references

References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709.  doi: 10.1016/j.na.2009.01.008.  Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545.   Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995).   Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000).   Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690.  doi: 10.1016/j.na.2005.07.017.  Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008.  doi: 10.1016/j.na.2008.08.010.  Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11.   Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991).   Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565.  doi: 10.1016/S0362-546X(97)00315-5.  Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323.   Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983).   Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397.  doi: 10.1016/0022-247X(76)90052-4.  Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129.  doi: 10.2307/1998809.  Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996).   Google Scholar

[1]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[2]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[6]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[7]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[10]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[11]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]