2011, 30(4): 1243-1248. doi: 10.3934/dcds.2011.30.1243

A criterion for topological entropy to decrease under normalised Ricci flow

1. 

Department of Mathematics, Pennsylvania State University, University Park, State College, PA 16802, United States

Received  July 2010 Revised  December 2010 Published  May 2011

In 2004, Manning showed that the topological entropy of the geodesic flow for a surface of negative curvature decreases as the metric evolves under the normalised Ricci flow. It is an interesting open problem, also due to Manning, to determine to what extent such behaviour persists for higher dimensional manifolds. In this short note, we describe the problem and give a curvature criterion under which monotonicity of the topological entropy can be established for a short time. In particular, the criterion applies to metrics of negative sectional curvature which are in the same conformal class as a metric of constant negative sectional curvature.
Citation: Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243
References:
[1]

G. Besson, G. Courtois and S. Gallot, Minimal entropy and Mostow's rigidity theorems,, Ergodic Theory Dynam. Systems, 16 (1996), 623.

[2]

R. Bowen, Periodic orbits for hyperbolic flows,, American J. Math., 94 (1972), 1. doi: 10.2307/2373590.

[3]

K. Burns and G. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281. doi: 10.1088/0951-7715/15/2/305.

[4]

B. Chow and D. Knopf, "The Ricci Flow: An introduction,", Mathematical Surveys and Monographs, 110 (2004).

[5]

G. Contreras, Regularity of topological entropy of hyperbolic flows,, Math. Z., 210 (1992), 97. doi: 10.1007/BF02571785.

[6]

F. T. Farrell and P. Ontaneda, A caveat on the convergence of the Ricci flow for pinched negatively curved manifolds,, Asian J. Math., 9 (2005), 401.

[7]

L. Flaminio, Local entropy rigidity for hyperbolic manifolds,, Comm. Anal. Geom., 3 (1995), 555.

[8]

A. Freire and R. Mané, On the entropy of geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375. doi: 10.1007/BF01389360.

[9]

R. Hamilton, The formation of singularities in the Ricci flow,, Surveys in Differential Geometry, 2 (1995), 7.

[10]

D. Jane, An example of how the Ricci flow can increase topological entropy,, Ergodic Theory Dynam. Systems, 27 (2007), 1919. doi: 10.1017/S0143385707000211.

[11]

A. Katok, Entropy and closed geodesics,, Ergodic Theory Dynam. Systems, 2 (1982), 339. doi: 10.1017/S0143385700001656.

[12]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", "Encyclopedia of Mathematics and its Applications,", 54 (1995).

[13]

A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581. doi: 10.1007/BF01393838.

[14]

A. Katok, G. Knieper and H. Weiss, Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows,, Comm. Math. Phys., 138 (1991), 19. doi: 10.1007/BF02099667.

[15]

G. Knieper, A second derivative formula of the Liouville entropy at spaces of constant negative curvature,, Ergodic Theory Dynam. Systems, 17 (1997), 1131. doi: 10.1017/S0143385797086446.

[16]

A. Manning, Topological entropy for geodesic flows,, Ann. Math., 110 (1979), 567. doi: 10.2307/1971239.

[17]

A. Manning, The volume entropy of a surface decreases along the Ricci flow,, Ergodic Theory Dynam. Systems, 24 (2004), 171. doi: 10.1017/S0143385703000415.

[18]

J. Morgan and G. Tian, "Ricci Flow and the Poincaré Conjecture,", Clay Mathematics Monographs, 3 (2007).

[19]

R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows,, Invent. Math., 77 (1984), 455. doi: 10.1007/BF01388833.

[20]

G. Paternain and J. Petean, The pressure of Ricci curvature,, Geometriae Dedicata, 100 (2003), 93. doi: 10.1023/A:1025842932050.

[21]

R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics,, in, 1365 (1987), 120.

[22]

P. Topping, "Lectures on the Ricci Flow,", LMS Lecture Note Series, 325 (2006).

[23]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

[24]

R. Ye, Ricci flow, Einstein metrics and space forms,, Trans. Amer. Math. Soc., 338 (1993), 871. doi: 10.2307/2154433.

show all references

References:
[1]

G. Besson, G. Courtois and S. Gallot, Minimal entropy and Mostow's rigidity theorems,, Ergodic Theory Dynam. Systems, 16 (1996), 623.

[2]

R. Bowen, Periodic orbits for hyperbolic flows,, American J. Math., 94 (1972), 1. doi: 10.2307/2373590.

[3]

K. Burns and G. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281. doi: 10.1088/0951-7715/15/2/305.

[4]

B. Chow and D. Knopf, "The Ricci Flow: An introduction,", Mathematical Surveys and Monographs, 110 (2004).

[5]

G. Contreras, Regularity of topological entropy of hyperbolic flows,, Math. Z., 210 (1992), 97. doi: 10.1007/BF02571785.

[6]

F. T. Farrell and P. Ontaneda, A caveat on the convergence of the Ricci flow for pinched negatively curved manifolds,, Asian J. Math., 9 (2005), 401.

[7]

L. Flaminio, Local entropy rigidity for hyperbolic manifolds,, Comm. Anal. Geom., 3 (1995), 555.

[8]

A. Freire and R. Mané, On the entropy of geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375. doi: 10.1007/BF01389360.

[9]

R. Hamilton, The formation of singularities in the Ricci flow,, Surveys in Differential Geometry, 2 (1995), 7.

[10]

D. Jane, An example of how the Ricci flow can increase topological entropy,, Ergodic Theory Dynam. Systems, 27 (2007), 1919. doi: 10.1017/S0143385707000211.

[11]

A. Katok, Entropy and closed geodesics,, Ergodic Theory Dynam. Systems, 2 (1982), 339. doi: 10.1017/S0143385700001656.

[12]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", "Encyclopedia of Mathematics and its Applications,", 54 (1995).

[13]

A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581. doi: 10.1007/BF01393838.

[14]

A. Katok, G. Knieper and H. Weiss, Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows,, Comm. Math. Phys., 138 (1991), 19. doi: 10.1007/BF02099667.

[15]

G. Knieper, A second derivative formula of the Liouville entropy at spaces of constant negative curvature,, Ergodic Theory Dynam. Systems, 17 (1997), 1131. doi: 10.1017/S0143385797086446.

[16]

A. Manning, Topological entropy for geodesic flows,, Ann. Math., 110 (1979), 567. doi: 10.2307/1971239.

[17]

A. Manning, The volume entropy of a surface decreases along the Ricci flow,, Ergodic Theory Dynam. Systems, 24 (2004), 171. doi: 10.1017/S0143385703000415.

[18]

J. Morgan and G. Tian, "Ricci Flow and the Poincaré Conjecture,", Clay Mathematics Monographs, 3 (2007).

[19]

R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows,, Invent. Math., 77 (1984), 455. doi: 10.1007/BF01388833.

[20]

G. Paternain and J. Petean, The pressure of Ricci curvature,, Geometriae Dedicata, 100 (2003), 93. doi: 10.1023/A:1025842932050.

[21]

R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics,, in, 1365 (1987), 120.

[22]

P. Topping, "Lectures on the Ricci Flow,", LMS Lecture Note Series, 325 (2006).

[23]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

[24]

R. Ye, Ricci flow, Einstein metrics and space forms,, Trans. Amer. Math. Soc., 338 (1993), 871. doi: 10.2307/2154433.

[1]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[2]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[3]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[4]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[5]

Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158

[6]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[7]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[8]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[9]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[10]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[11]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[12]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[13]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[14]

Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333

[15]

Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65

[16]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[17]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[18]

Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems & Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003

[19]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[20]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]