• Previous Article
    Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
  • DCDS Home
  • This Issue
  • Next Article
    A generalization of the moment problem to a complex measure space and an approximation technique using backward moments
2011, 30(1): 169-186. doi: 10.3934/dcds.2011.30.169

Upper and lower estimates for invariance entropy

1. 

Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany

Received  November 2009 Revised  November 2010 Published  February 2011

Invariance entropy for continuous-time control systems measures how often open-loop control functions have to be updated in order to render a subset of the state space invariant. In the present paper, we derive upper and lower bounds for the invariance entropy of control systems on smooth manifolds, using differential-geometric tools. As an example, we compute these bounds explicitly for projected bilinear control systems on the unit sphere. Moreover, we derive a formula for the invariance entropy of a control set for one-dimensional control-affine systems with a single control vector field.
Citation: Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169
References:
[1]

V. A. Boichenko and G. A. Leonov, The direct Lyapunov method in estimates for topological entropy,, J. Math. Sci., 91 (1998), 3370.

[2]

V. A. Boichenko, G. A. Leonov and V. Reitmann, "Dimension Theory for Ordinary Differential Equations,", Teubner Texts in Mathematics, (2005).

[3]

F. Colonius and C. Kawan, Invariance entropy for control systems,, SIAM J. Control Optim., 48 (2009), 1701. doi: 10.1137/080713902.

[4]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser-Verlag, (2000).

[5]

S. Gallot, D. Hulin and J. Lafontaine, "Riemannian Geometry,", Springer-Verlag, (1987).

[6]

K. A. Grasse and H. J. Sussmann, Global controllability by nice controls,, in, 133 (1990), 33.

[7]

F. Ito, An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism,, Proc. Japan Acad., 46 (1970), 226. doi: 10.3792/pja/1195520395.

[8]

C. Kawan, "Invariance Entropy for Control Systems,", Ph.D thesis, (2009).

[9]

C. Kawan, Invariance entropy of control sets,, to appear in SIAM J. Control Optim., ().

[10]

G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization,, IEEE Trans. Automat. Control, 49 (2004), 1585. doi: 10.1109/TAC.2004.834105.

[11]

A. Noack, "Dimension and Entropy Estimates and Stability Investigations for Nonlinear Systems on Manifolds (Dimensions- und Entropieabschätzungen sowie Stabilitätsuntersuchungen für nichtlineare Systeme auf Mannigfaltigkeiten),", Ph.D thesis (German), (1998).

show all references

References:
[1]

V. A. Boichenko and G. A. Leonov, The direct Lyapunov method in estimates for topological entropy,, J. Math. Sci., 91 (1998), 3370.

[2]

V. A. Boichenko, G. A. Leonov and V. Reitmann, "Dimension Theory for Ordinary Differential Equations,", Teubner Texts in Mathematics, (2005).

[3]

F. Colonius and C. Kawan, Invariance entropy for control systems,, SIAM J. Control Optim., 48 (2009), 1701. doi: 10.1137/080713902.

[4]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser-Verlag, (2000).

[5]

S. Gallot, D. Hulin and J. Lafontaine, "Riemannian Geometry,", Springer-Verlag, (1987).

[6]

K. A. Grasse and H. J. Sussmann, Global controllability by nice controls,, in, 133 (1990), 33.

[7]

F. Ito, An estimate from above for the entropy and the topological entropy of a $C^1$-diffeomorphism,, Proc. Japan Acad., 46 (1970), 226. doi: 10.3792/pja/1195520395.

[8]

C. Kawan, "Invariance Entropy for Control Systems,", Ph.D thesis, (2009).

[9]

C. Kawan, Invariance entropy of control sets,, to appear in SIAM J. Control Optim., ().

[10]

G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization,, IEEE Trans. Automat. Control, 49 (2004), 1585. doi: 10.1109/TAC.2004.834105.

[11]

A. Noack, "Dimension and Entropy Estimates and Stability Investigations for Nonlinear Systems on Manifolds (Dimensions- und Entropieabschätzungen sowie Stabilitätsuntersuchungen für nichtlineare Systeme auf Mannigfaltigkeiten),", Ph.D thesis (German), (1998).

[1]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[2]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[3]

Fritz Colonius. Invariance entropy, quasi-stationary measures and control sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2093-2123. doi: 10.3934/dcds.2018086

[4]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

[5]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[6]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[7]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[8]

Andrew D. Lewis. Linearisation of tautological control systems. Journal of Geometric Mechanics, 2016, 8 (1) : 99-138. doi: 10.3934/jgm.2016.8.99

[9]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[10]

Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control & Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002

[11]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[12]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[13]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[14]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks & Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[15]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[16]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[17]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2019-2034. doi: 10.3934/dcdss.2019130

[18]

El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221

[19]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[20]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control & Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]