April  2011, 30(1): 313-363. doi: 10.3934/dcds.2011.30.313

Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups

1. 

Department of Mathematics, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043

2. 

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430

Received  August 2009 Revised  October 2010 Published  February 2011

We consider the dynamics of semi-hyperbolic semigroups generated by finitely many rational maps on the Riemann sphere. Assuming that the nice open set condition holds it is proved that there exists a geometric measure on the Julia set with exponent $h$ equal to the Hausdorff dimension of the Julia set. Both $h$-dimensional Hausdorff and packing measures are finite and positive on the Julia set and are mutually equivalent with Radon-Nikodym derivatives uniformly separated from zero and infinity. All three fractal dimensions, Hausdorff, packing and box counting are equal. It is also proved that for the canonically associated skew-product map there exists a unique $h$-conformal measure. Furthermore, it is shown that this conformal measure admits a unique Borel probability absolutely continuous invariant (under the skew-product map) measure. In fact these two measures are equivalent, and the invariant measure is metrically exact, hence ergodic.
Citation: Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313
References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs Vol. \textbf{50}, 50 (1997).

[2]

R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form $z^2+c_n$,, Pacific J. Math., 198 (2001), 347. doi: 10.2140/pjm.2001.198.347.

[3]

R. Brück, M. Büger and S. Reitz, Random iterations of polynomials of the form $z^2+c_n$: Connectedness of Julia sets,, Ergodic Theory Dynam. Systems, 19 (1999), 1221. doi: 10.1017/S0143385799141658.

[4]

M. Büger, Self-similarity of Julia sets of the composition of polynomials,, Ergodic Theory Dynam. Systems, 17 (1997), 1289. doi: 10.1017/S0143385797086458.

[5]

M. Büger, On the composition of polynomials of the form $z^2+c_n$,, Math. Ann., 310 (1998), 661.

[6]

L. Carleson, P. W. Jones and J. -C. Yoccoz, Julia and John,, Bol. Soc. Brazil. Math., 25 (1994), 1.

[7]

M. Denker and M. Urbański, On the existence of conformal measures,, Trans. Amer. Math. Soc., 328 (1991), 563. doi: 10.2307/2001795.

[8]

M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps,, Nonlinearity, 4 (1991), 103. doi: 10.1088/0951-7715/4/1/008.

[9]

M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere,, Nonlinearity, 4 (1991), 365. doi: 10.1088/0951-7715/4/2/008.

[10]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,", Reprint of the second (1989) edition. Studies in Nonlinearity, (1989).

[11]

K. Falconer, "Techniques in Fractal Geometry,", John Wiley & Sons, (1997).

[12]

H. Federer, "Geometric Measure Theory,", Springer, (1969).

[13]

J. E. Fornaess and N. Sibony, Random iterations of rational functions,, Ergodic Theory Dynam. Systems, 11 (1991), 687. doi: 10.1017/S0143385700006428.

[14]

Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical system,, Ergodic Theory Dynam. Systems, 23 (2003), 1807. doi: 10.1017/S0143385703000129.

[15]

A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions I,, Proc. London Math. Soc. (3), 73 (1996), 358. doi: 10.1112/plms/s3-73.2.358.

[16]

A. Hinkkanen and G. J. Martin, Julia Sets of Rational Semigroups,, Math. Z., 222 (1996), 161.

[17]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere,, Ergodic Theory Dynam. Systems, 3 (1983), 351.

[18]

M. Martens, The existence of σ-finite invariant measures, Applications to real one-dimensional dynamics,, Front for the Math., ().

[19]

P. Mattila, "Geometry of Sets and Measures in Euclidean spaces. Fractals and Rectifiability,", Cambridge Studies in Advanced Mathematics, 44 (1995).

[20]

R. D. Mauldin, T. Szarek and M. Urbański, Graph directed Markov systems on Hilbert spaces,, Math. Proc. Cambridge Phil. Soc., 147 (2009), 455. doi: 10.1017/S0305004109002448.

[21]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105. doi: 10.1112/plms/s3-73.1.105.

[22]

R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511543050.

[23]

J. Milnor, "Dynamics in One Complex Variable (Third Edition),", Annals of Mathematical Studies, (2006).

[24]

V. Mayer, B. Skorulski and M. Urbański, Random distance expanding mappings, thermodynamic formalism, Gibbs measures, and fractal geometry,, preprint 2008, (2008).

[25]

W. Parry, "Entropy and Generators in Ergodic Theory,", Mathematics Lecture Note Series, (1969).

[26]

F. Przytycki and M. Urbański, "Fractals in the Plane - The Ergodic Theory Methods,", to be published from Cambridge University Press, ().

[27]

D. Ruelle, "Thermodynamic Formalism,", Encyclopedia of Math. and Appl., 5 (1978).

[28]

R. Stankewitz, Completely invariant Julia sets of polynomial semigroups,, Proc. Amer. Math. Soc., 127 (1999), 2889. doi: 10.1090/S0002-9939-99-04857-1.

[29]

R. Stankewitz, Completely invariant sets of normality for rational semigroups,, Complex Variables Theory Appl., 40 (2000), 199.

[30]

R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's,, Proc. Amer. Math. Soc., 128 (2000), 2569. doi: 10.1090/S0002-9939-00-05313-2.

[31]

R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups,, Annales Academiae Scientiarum Fennicae Mathematica, 29 (2004), 357.

[32]

R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups,, to appear in Trans. Amer. Math. Soc., ().

[33]

D. Steinsaltz, Random logistic maps and Lyapunov exponents,, Indag. Mathem., 12 (2001), 557.

[34]

H. Sumi, On dynamics of hyperbolic rational semigroups,, J. Math. Kyoto Univ., 37 (1997), 717.

[35]

H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic rational semigroups,, Kodai Mathematical Journal, 21 (1998), 10. doi: 10.2996/kmj/1138043831.

[36]

H. Sumi, Skew product maps related to finitely generated rational semigroups,, Nonlinearity, 13 (2000), 995. doi: 10.1088/0951-7715/13/4/302.

[37]

H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,, Ergodic Theory Dynam. Systems, 21 (2001), 563.

[38]

H. Sumi, Dimensions of Julia sets of expanding rational semigroups,, Kodai Mathematical Journal, 28 (2005), 390.

[39]

H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups,, Ergodic Theory Dynam. Systems, 26 (2006), 893. doi: 10.1017/S0143385705000532.

[40]

H. Sumi, Random dynamics of polynomials and devil's-staircase-like functions in the complex plane,, Appl. Math. Comput., 187 (2007), 489. doi: 10.1016/j.amc.2006.08.149.

[41]

H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity,, RIMS Kokyuroku, 1494 (2006), 62.

[42]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups I: connected components of the Julia sets,, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 1205. doi: 10.3934/dcds.2011.29.1205.

[43]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups II: Fiberwise dynamics and the Julia sets,, preprint, ().

[44]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups III: Classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles,, Ergodic Theory Dynam. Systems, 30 (2010), 1869. doi: 10.1017/S0143385709000923.

[45]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups,, preprint 2007, (2007).

[46]

H. Sumi, Interaction cohomology of forward or backward self-similar systems,, Adv. Math., 222 (2009), 729. doi: 10.1016/j.aim.2009.04.007.

[47]

H. Sumi, Random complex dynamics and semigroups of holomorphic maps,, Proc. London Math. Soc., 102 (2011), 50. doi: 10.1112/plms/pdq013.

[48]

H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics,, preprint 2010, (2010).

[49]

H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps,, Monatsh. Math., 156 (2009), 371. doi: 10.1007/s00605-008-0016-8.

[50]

H. Sumi and M. Urbański, Real analyticity of Hausdorff dimension for expanding rational semigroups,, Ergodic Theory Dynam. Systems, 30 (2010), 601. doi: 10.1017/S0143385709000297.

[51]

M. Urbański, Rational functions with no recurrent critical points,, Ergodic Theory Dynam. Systems, 14 (1994), 391.

[52]

M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics,, Ergodic Theory Dynam. Systems, 17 (1997), 1449. doi: 10.1017/S014338579708646X.

[53]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (1982).

[54]

W. Zhou and and F. Ren, The Julia sets of the random iteration of rational functions,, Chinese Sci. Bulletin, 37 (1992), 969.

show all references

References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs Vol. \textbf{50}, 50 (1997).

[2]

R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form $z^2+c_n$,, Pacific J. Math., 198 (2001), 347. doi: 10.2140/pjm.2001.198.347.

[3]

R. Brück, M. Büger and S. Reitz, Random iterations of polynomials of the form $z^2+c_n$: Connectedness of Julia sets,, Ergodic Theory Dynam. Systems, 19 (1999), 1221. doi: 10.1017/S0143385799141658.

[4]

M. Büger, Self-similarity of Julia sets of the composition of polynomials,, Ergodic Theory Dynam. Systems, 17 (1997), 1289. doi: 10.1017/S0143385797086458.

[5]

M. Büger, On the composition of polynomials of the form $z^2+c_n$,, Math. Ann., 310 (1998), 661.

[6]

L. Carleson, P. W. Jones and J. -C. Yoccoz, Julia and John,, Bol. Soc. Brazil. Math., 25 (1994), 1.

[7]

M. Denker and M. Urbański, On the existence of conformal measures,, Trans. Amer. Math. Soc., 328 (1991), 563. doi: 10.2307/2001795.

[8]

M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps,, Nonlinearity, 4 (1991), 103. doi: 10.1088/0951-7715/4/1/008.

[9]

M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere,, Nonlinearity, 4 (1991), 365. doi: 10.1088/0951-7715/4/2/008.

[10]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,", Reprint of the second (1989) edition. Studies in Nonlinearity, (1989).

[11]

K. Falconer, "Techniques in Fractal Geometry,", John Wiley & Sons, (1997).

[12]

H. Federer, "Geometric Measure Theory,", Springer, (1969).

[13]

J. E. Fornaess and N. Sibony, Random iterations of rational functions,, Ergodic Theory Dynam. Systems, 11 (1991), 687. doi: 10.1017/S0143385700006428.

[14]

Z. Gong, W. Qiu and Y. Li, Connectedness of Julia sets for a quadratic random dynamical system,, Ergodic Theory Dynam. Systems, 23 (2003), 1807. doi: 10.1017/S0143385703000129.

[15]

A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions I,, Proc. London Math. Soc. (3), 73 (1996), 358. doi: 10.1112/plms/s3-73.2.358.

[16]

A. Hinkkanen and G. J. Martin, Julia Sets of Rational Semigroups,, Math. Z., 222 (1996), 161.

[17]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere,, Ergodic Theory Dynam. Systems, 3 (1983), 351.

[18]

M. Martens, The existence of σ-finite invariant measures, Applications to real one-dimensional dynamics,, Front for the Math., ().

[19]

P. Mattila, "Geometry of Sets and Measures in Euclidean spaces. Fractals and Rectifiability,", Cambridge Studies in Advanced Mathematics, 44 (1995).

[20]

R. D. Mauldin, T. Szarek and M. Urbański, Graph directed Markov systems on Hilbert spaces,, Math. Proc. Cambridge Phil. Soc., 147 (2009), 455. doi: 10.1017/S0305004109002448.

[21]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems,, Proc. London Math. Soc. (3), 73 (1996), 105. doi: 10.1112/plms/s3-73.1.105.

[22]

R. D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets,", Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511543050.

[23]

J. Milnor, "Dynamics in One Complex Variable (Third Edition),", Annals of Mathematical Studies, (2006).

[24]

V. Mayer, B. Skorulski and M. Urbański, Random distance expanding mappings, thermodynamic formalism, Gibbs measures, and fractal geometry,, preprint 2008, (2008).

[25]

W. Parry, "Entropy and Generators in Ergodic Theory,", Mathematics Lecture Note Series, (1969).

[26]

F. Przytycki and M. Urbański, "Fractals in the Plane - The Ergodic Theory Methods,", to be published from Cambridge University Press, ().

[27]

D. Ruelle, "Thermodynamic Formalism,", Encyclopedia of Math. and Appl., 5 (1978).

[28]

R. Stankewitz, Completely invariant Julia sets of polynomial semigroups,, Proc. Amer. Math. Soc., 127 (1999), 2889. doi: 10.1090/S0002-9939-99-04857-1.

[29]

R. Stankewitz, Completely invariant sets of normality for rational semigroups,, Complex Variables Theory Appl., 40 (2000), 199.

[30]

R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's,, Proc. Amer. Math. Soc., 128 (2000), 2569. doi: 10.1090/S0002-9939-00-05313-2.

[31]

R. Stankewitz, T. Sugawa and H. Sumi, Some counterexamples in dynamics of rational semigroups,, Annales Academiae Scientiarum Fennicae Mathematica, 29 (2004), 357.

[32]

R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups,, to appear in Trans. Amer. Math. Soc., ().

[33]

D. Steinsaltz, Random logistic maps and Lyapunov exponents,, Indag. Mathem., 12 (2001), 557.

[34]

H. Sumi, On dynamics of hyperbolic rational semigroups,, J. Math. Kyoto Univ., 37 (1997), 717.

[35]

H. Sumi, On Hausdorff dimension of Julia sets of hyperbolic rational semigroups,, Kodai Mathematical Journal, 21 (1998), 10. doi: 10.2996/kmj/1138043831.

[36]

H. Sumi, Skew product maps related to finitely generated rational semigroups,, Nonlinearity, 13 (2000), 995. doi: 10.1088/0951-7715/13/4/302.

[37]

H. Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,, Ergodic Theory Dynam. Systems, 21 (2001), 563.

[38]

H. Sumi, Dimensions of Julia sets of expanding rational semigroups,, Kodai Mathematical Journal, 28 (2005), 390.

[39]

H. Sumi, Semi-hyperbolic fibered rational maps and rational semigroups,, Ergodic Theory Dynam. Systems, 26 (2006), 893. doi: 10.1017/S0143385705000532.

[40]

H. Sumi, Random dynamics of polynomials and devil's-staircase-like functions in the complex plane,, Appl. Math. Comput., 187 (2007), 489. doi: 10.1016/j.amc.2006.08.149.

[41]

H. Sumi, The space of postcritically bounded 2-generator polynomial semigroups with hyperbolicity,, RIMS Kokyuroku, 1494 (2006), 62.

[42]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups I: connected components of the Julia sets,, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 1205. doi: 10.3934/dcds.2011.29.1205.

[43]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups II: Fiberwise dynamics and the Julia sets,, preprint, ().

[44]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups III: Classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles,, Ergodic Theory Dynam. Systems, 30 (2010), 1869. doi: 10.1017/S0143385709000923.

[45]

H. Sumi, Dynamics of postcritically bounded polynomial semigroups,, preprint 2007, (2007).

[46]

H. Sumi, Interaction cohomology of forward or backward self-similar systems,, Adv. Math., 222 (2009), 729. doi: 10.1016/j.aim.2009.04.007.

[47]

H. Sumi, Random complex dynamics and semigroups of holomorphic maps,, Proc. London Math. Soc., 102 (2011), 50. doi: 10.1112/plms/pdq013.

[48]

H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics,, preprint 2010, (2010).

[49]

H. Sumi and M. Urbański, The equilibrium states for semigroups of rational maps,, Monatsh. Math., 156 (2009), 371. doi: 10.1007/s00605-008-0016-8.

[50]

H. Sumi and M. Urbański, Real analyticity of Hausdorff dimension for expanding rational semigroups,, Ergodic Theory Dynam. Systems, 30 (2010), 601. doi: 10.1017/S0143385709000297.

[51]

M. Urbański, Rational functions with no recurrent critical points,, Ergodic Theory Dynam. Systems, 14 (1994), 391.

[52]

M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics,, Ergodic Theory Dynam. Systems, 17 (1997), 1449. doi: 10.1017/S014338579708646X.

[53]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (1982).

[54]

W. Zhou and and F. Ren, The Julia sets of the random iteration of rational functions,, Chinese Sci. Bulletin, 37 (1992), 969.

[1]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[2]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[3]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[4]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[5]

Frank Neubrander, Koray Özer, Teresa Sandmaier. Rational approximations of semigroups without scaling and squaring. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5305-5317. doi: 10.3934/dcds.2013.33.5305

[6]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[7]

Magdalena Caubergh, Freddy Dumortier, Stijn Luca. Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Lienard systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 963-980. doi: 10.3934/dcds.2010.27.963

[8]

Sebastián Donoso. Enveloping semigroups of systems of order d. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2729-2740. doi: 10.3934/dcds.2014.34.2729

[9]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[10]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[11]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[12]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[13]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[14]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[15]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[16]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[17]

Giuseppe Da Prato. Transition semigroups corresponding to Lipschitz dissipative systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 177-192. doi: 10.3934/dcds.2004.10.177

[18]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[19]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[20]

Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]