2011, 30(4): 995-1035. doi: 10.3934/dcds.2011.30.995

Dispersive estimates using scattering theory for matrix Hamiltonian equations

1. 

Department of Mathematics, UNC-Chapel Hill, CB#3250, Phillips Hall, Chapel Hill, NC 27599-3250, United States

Received  February 2010 Revised  February 2011 Published  May 2011

We develop the techniques of [25] and [11] in order to derive dispersive estimates for a matrix Hamiltonian equation defined by linearizing about a minimal mass soliton solution of a saturated, focussing nonlinear Schrödinger equation

$\i u_t + \Delta u + \beta (|u|^2) u = 0$
$\u(0,x) = u_0 (x),$

in $\mathbb{R}^3$. These results have been seen before, though we present a new approach using scattering theory techniques. In further works, we will numerically and analytically study the existence of a minimal mass soliton, as well as the spectral assumptions made in the analysis presented here.
Citation: Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995
References:
[1]

S. Agmon, Spectral properties for Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151.

[2]

R. Beals, Characterization of pseudodifferential operators and applications,, Duke Mathematical Journal, 44 (1977), 45. doi: 10.1215/S0012-7094-77-04402-7.

[3]

H. Berestycki and P. L. Lion, Nonlinear scalar field equations, I: Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555.

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, 223 (1976).

[5]

J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 197.

[6]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).

[7]

M. Christ and A. Kiselev, Maximal functions associated with filtrations,, Comm. Pure Appl. Math., 56 (2003), 1565.

[8]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy,, Comm. Pure Appl. Math., 56 (2003), 1565. doi: 10.1002/cpa.10104.

[9]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 409.

[10]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1. doi: 10.1002/cpa.20050.

[11]

B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three. II,, J. Anal. Math., 99 (2006), 199. doi: 10.1007/BF02789446.

[12]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).

[13]

L. C. Evans and M. Zworski, Lectures on semiclassical analysis,, Unpublished Lecture Notes, (2006).

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308. doi: 10.1016/0022-1236(90)90016-E.

[15]

P. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators,", Applied Mathematical Sciences, 113 (1996).

[16]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I,", Classics in Mathematics, (2003).

[17]

L. Hörmander, "The Analysis of Linear Partial Differential Operators II,", Classics in Mathematics, (2005).

[18]

L. Hörmander, "The Analysis of Linear Partial Differential Operators III,", Grundlehren der Mathematischen Wissenschaften, 274 (1994).

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV,", Grundlehren der Mathematischen Wissenschaften, 275 (1994).

[20]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815. doi: 10.1090/S0894-0347-06-00524-8.

[21]

J. L. Marzuola, A class of stable perturbations for a minimal mass soliton in three dimensional saturated nonlinear Schrödinger equations,, SIAM J. of Math. Anal., 42 (2010), 1382. doi: 10.1137/09075175X.

[22]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators,, Nonlinearity, 24 (2010), 389. doi: 10.1088/0951-7715/24/2/003.

[23]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb R^n$, II,, Transactions of the American Mathematical Society, 339 (1993), 495. doi: 10.2307/2154282.

[24]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of $N$-soliton states of NLS,, preprint, (2003).

[25]

W. Schlag, Stable manifolds for an orbitally unstable NLS,, Annals of Math., 169 (2009), 139. doi: 10.4007/annals.2009.169.139.

[26]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Communications in Mathematical Physics, 91 (1983), 313. doi: 10.1007/BF01208779.

[27]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Transactions of the American Mathematical Society, 290 (1985), 701. doi: 10.1090/S0002-9947-1985-0792821-7.

[28]

J. Shatah and W. Strauss, Instability of nonlinear bound states,, Communications in Mathematical Physics, 100 (1985), 173. doi: 10.1007/BF01212446.

[29]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).

[30]

C. Sulem and P. Sulem, "The nonlinear Schrödinger Equation. Self-Focusing and Wave-Collapse,", Applied Mathematical Sciences, 39 (1999).

[31]

M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations,, SIAM Journal of Mathematical Analysis, 16 (1985), 472. doi: 10.1137/0516034.

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Communications on Pure and Applied Mathematics, 39 (1986), 51. doi: 10.1002/cpa.3160390103.

show all references

References:
[1]

S. Agmon, Spectral properties for Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151.

[2]

R. Beals, Characterization of pseudodifferential operators and applications,, Duke Mathematical Journal, 44 (1977), 45. doi: 10.1215/S0012-7094-77-04402-7.

[3]

H. Berestycki and P. L. Lion, Nonlinear scalar field equations, I: Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555.

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, 223 (1976).

[5]

J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 197.

[6]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).

[7]

M. Christ and A. Kiselev, Maximal functions associated with filtrations,, Comm. Pure Appl. Math., 56 (2003), 1565.

[8]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy,, Comm. Pure Appl. Math., 56 (2003), 1565. doi: 10.1002/cpa.10104.

[9]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 409.

[10]

S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem,, Comm. Pure Appl. Math., 58 (2005), 1. doi: 10.1002/cpa.20050.

[11]

B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or eigenvalue at zero energy in dimension three. II,, J. Anal. Math., 99 (2006), 199. doi: 10.1007/BF02789446.

[12]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).

[13]

L. C. Evans and M. Zworski, Lectures on semiclassical analysis,, Unpublished Lecture Notes, (2006).

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308. doi: 10.1016/0022-1236(90)90016-E.

[15]

P. Hislop and I. M. Sigal, "Introduction to Spectral Theory. With Applications to Schrödinger Operators,", Applied Mathematical Sciences, 113 (1996).

[16]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I,", Classics in Mathematics, (2003).

[17]

L. Hörmander, "The Analysis of Linear Partial Differential Operators II,", Classics in Mathematics, (2005).

[18]

L. Hörmander, "The Analysis of Linear Partial Differential Operators III,", Grundlehren der Mathematischen Wissenschaften, 274 (1994).

[19]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV,", Grundlehren der Mathematischen Wissenschaften, 275 (1994).

[20]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815. doi: 10.1090/S0894-0347-06-00524-8.

[21]

J. L. Marzuola, A class of stable perturbations for a minimal mass soliton in three dimensional saturated nonlinear Schrödinger equations,, SIAM J. of Math. Anal., 42 (2010), 1382. doi: 10.1137/09075175X.

[22]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators,, Nonlinearity, 24 (2010), 389. doi: 10.1088/0951-7715/24/2/003.

[23]

K. McLeod, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb R^n$, II,, Transactions of the American Mathematical Society, 339 (1993), 495. doi: 10.2307/2154282.

[24]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of $N$-soliton states of NLS,, preprint, (2003).

[25]

W. Schlag, Stable manifolds for an orbitally unstable NLS,, Annals of Math., 169 (2009), 139. doi: 10.4007/annals.2009.169.139.

[26]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Communications in Mathematical Physics, 91 (1983), 313. doi: 10.1007/BF01208779.

[27]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Transactions of the American Mathematical Society, 290 (1985), 701. doi: 10.1090/S0002-9947-1985-0792821-7.

[28]

J. Shatah and W. Strauss, Instability of nonlinear bound states,, Communications in Mathematical Physics, 100 (1985), 173. doi: 10.1007/BF01212446.

[29]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).

[30]

C. Sulem and P. Sulem, "The nonlinear Schrödinger Equation. Self-Focusing and Wave-Collapse,", Applied Mathematical Sciences, 39 (1999).

[31]

M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations,, SIAM Journal of Mathematical Analysis, 16 (1985), 472. doi: 10.1137/0516034.

[32]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Communications on Pure and Applied Mathematics, 39 (1986), 51. doi: 10.1002/cpa.3160390103.

[1]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[2]

Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121

[3]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[4]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[5]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[6]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[7]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[8]

Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387

[9]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[10]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[11]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks & Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[12]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[13]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[14]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[15]

Vito Mandorino. Connecting orbits for families of Tonelli Hamiltonians. Journal of Modern Dynamics, 2012, 6 (4) : 499-538. doi: 10.3934/jmd.2012.6.499

[16]

Elena Cordero, Fabio Nicola, Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4805-4821. doi: 10.3934/dcds.2015.35.4805

[17]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[18]

Primitivo Acosta-Humánez, David Blázquez-Sanz. Non-integrability of some hamiltonians with rational potentials. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 265-293. doi: 10.3934/dcdsb.2008.10.265

[19]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[20]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]