# American Institute of Mathematical Sciences

December  2011, 31(4): 1023-1038. doi: 10.3934/dcds.2011.31.1023

## Finite-time Lyapunov stability analysis of evolution variational inequalities

 1 Université de La Réunion, PIMENT EA 4518, 97400 Saint-Denis, France 2 XLIM UMR-CNRS 6172, Université de Limoges, 87060 Limoges, France, France

Received  November 2009 Revised  October 2010 Published  September 2011

Using Lyapunov's stability and LaSalle's invariance principle for nonsmooth dynamical systems, we establish some conditions for finite-time stability of evolution variational inequalities. The theoretical results are illustrated by some examples drawn from electrical circuits involving nonsmooth elements like diodes.
Citation: Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023
##### References:
 [1] K. Addi, S. Adly, B. Brogliato and D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics,, Nonlinear Analysis C: Hybrid Systems and Applications, 1 (2007), 30. [2] S. Adly, Attractivity theory for second order non-smooth dynamical systems with application to dry friction,, Journal of Mathematical Analysis and Applications, 322 (2006), 1055. doi: 10.1016/j.jmaa.2005.09.076. [3] S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems,, J. Maths. Pures Appl., 83 (2004), 17. doi: 10.1016/S0021-7824(03)00071-0. [4] J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1984). [5] J. Alvarez, I. Orlov and L. Acho, An invariance principle for discontinuous dynamic systems with applications to a Coulomb friction oscillator,, Journal of Dynamic Systems, 122 (2000), 687. doi: 10.1115/1.1317229. [6] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems,, SIAM J. Control Optimization, 38 (2000), 751. doi: 10.1137/S0363012997321358. [7] F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983). [8] A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer, (1988). [9] D. Goeleven, D. Motreanu and V. V. Motreanu, On the stability of stationary solutions of first order evolution variational inequalities,, Adv. Nonlinear Var. Inequal., 6 (2003), 1. [10] D. Goeleven and B. Brogliato, Necessary conditions of asymptotic stability for unilateral dynamical systems,, Nonlinear Anal., 61 (2005), 961. doi: 10.1016/j.na.2005.01.037. [11] D. Goeleven and B. Brogliato, Stability and unstability matrices for linear evolution variational inequalities,, submitted, (2002). [12] K. K. Hassan, "Nonlinear Systems,", Prentice-Hall, (1996). [13] V. T. Haimo, Finite time controllers,, SIAM J. Control and Optimisation, 24 (1986), 760. [14] T. Kato, Accretive operators and nonlinear evolutions equations in Banach spaces,, in, (1968). [15] M. Kocan and P. Soravia, Lyapunov functions for infnite-dimensional systems,, J. Funct. Anal., 192 (2002). doi: 10.1006/jfan.2001.3910. [16] E. Moulay and W. Perruquatti, Finite time stability of differential inclusions,, IMA J. Math. Control Info., 22 (2005), 465. doi: 10.1093/imamci/dni039. [17] E. Moulay and W. Perruquatti, Finite time stability and stabilization of a class of continuous systems,, J. Math. Anal. Appli., 323 (2006), 1430. doi: 10.1016/j.jmaa.2005.11.046. [18] Y. Orlov, Finite time stability and robust control systhesis of uncertain switched systems,, SIAM, 43 (2004), 1253. doi: 10.1137/S0363012903425593. [19] A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces,, J. Anal. Math., 40 (1981), 239. doi: 10.1007/BF02790164. [20] A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization,, Automatica J. IFAC, 45 (2009), 444. doi: 10.1016/j.automatica.2008.07.013. [21] P. Quittner, On the principle of linearized stability for variational inequalities,, Math. Ann., 283 (1989), 257. doi: 10.1007/BF01446434. [22] P. Quittner, An instability criterion for variational inequalities,, Nonlinear Analysis, 15 (1990), 1167. doi: 10.1016/0362-546X(90)90052-I. [23] E. P. Ryan, An integral invariance principle for differential inclusions with applications in adaptive control,, SIAM J. Control and Optim., 36 (1998), 960. doi: 10.1137/S0363012996301701. [24] R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). [25] G. V. Smirnov, "Introduction to the Theory of Differential Inclusions,", Graduate Studies in Mathematics, 41 (2002).

show all references

##### References:
 [1] K. Addi, S. Adly, B. Brogliato and D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics,, Nonlinear Analysis C: Hybrid Systems and Applications, 1 (2007), 30. [2] S. Adly, Attractivity theory for second order non-smooth dynamical systems with application to dry friction,, Journal of Mathematical Analysis and Applications, 322 (2006), 1055. doi: 10.1016/j.jmaa.2005.09.076. [3] S. Adly and D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems,, J. Maths. Pures Appl., 83 (2004), 17. doi: 10.1016/S0021-7824(03)00071-0. [4] J.-P. Aubin and A. Cellina, "Differential Inclusions. Set-Valued Maps and Viability Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1984). [5] J. Alvarez, I. Orlov and L. Acho, An invariance principle for discontinuous dynamic systems with applications to a Coulomb friction oscillator,, Journal of Dynamic Systems, 122 (2000), 687. doi: 10.1115/1.1317229. [6] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems,, SIAM J. Control Optimization, 38 (2000), 751. doi: 10.1137/S0363012997321358. [7] F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983). [8] A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer, (1988). [9] D. Goeleven, D. Motreanu and V. V. Motreanu, On the stability of stationary solutions of first order evolution variational inequalities,, Adv. Nonlinear Var. Inequal., 6 (2003), 1. [10] D. Goeleven and B. Brogliato, Necessary conditions of asymptotic stability for unilateral dynamical systems,, Nonlinear Anal., 61 (2005), 961. doi: 10.1016/j.na.2005.01.037. [11] D. Goeleven and B. Brogliato, Stability and unstability matrices for linear evolution variational inequalities,, submitted, (2002). [12] K. K. Hassan, "Nonlinear Systems,", Prentice-Hall, (1996). [13] V. T. Haimo, Finite time controllers,, SIAM J. Control and Optimisation, 24 (1986), 760. [14] T. Kato, Accretive operators and nonlinear evolutions equations in Banach spaces,, in, (1968). [15] M. Kocan and P. Soravia, Lyapunov functions for infnite-dimensional systems,, J. Funct. Anal., 192 (2002). doi: 10.1006/jfan.2001.3910. [16] E. Moulay and W. Perruquatti, Finite time stability of differential inclusions,, IMA J. Math. Control Info., 22 (2005), 465. doi: 10.1093/imamci/dni039. [17] E. Moulay and W. Perruquatti, Finite time stability and stabilization of a class of continuous systems,, J. Math. Anal. Appli., 323 (2006), 1430. doi: 10.1016/j.jmaa.2005.11.046. [18] Y. Orlov, Finite time stability and robust control systhesis of uncertain switched systems,, SIAM, 43 (2004), 1253. doi: 10.1137/S0363012903425593. [19] A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces,, J. Anal. Math., 40 (1981), 239. doi: 10.1007/BF02790164. [20] A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization,, Automatica J. IFAC, 45 (2009), 444. doi: 10.1016/j.automatica.2008.07.013. [21] P. Quittner, On the principle of linearized stability for variational inequalities,, Math. Ann., 283 (1989), 257. doi: 10.1007/BF01446434. [22] P. Quittner, An instability criterion for variational inequalities,, Nonlinear Analysis, 15 (1990), 1167. doi: 10.1016/0362-546X(90)90052-I. [23] E. P. Ryan, An integral invariance principle for differential inclusions with applications in adaptive control,, SIAM J. Control and Optim., 36 (1998), 960. doi: 10.1137/S0363012996301701. [24] R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). [25] G. V. Smirnov, "Introduction to the Theory of Differential Inclusions,", Graduate Studies in Mathematics, 41 (2002).
 [1] Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 [2] Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317 [3] S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 [4] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 [5] Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 [6] Yongchao Liu. Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 451-460. doi: 10.3934/naco.2018028 [7] Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 [8] Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 [9] Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 [10] Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 [11] Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463 [12] Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002 [13] Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57 [14] Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389 [15] Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273 [16] Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47 [17] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [18] Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 [19] Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 [20] Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

2017 Impact Factor: 1.179