December  2011, 31(4): 1151-1195. doi: 10.3934/dcds.2011.31.1151

An existence and uniqueness result for flux limited diffusion equations

1. 

DTIC, Universitat Pompeu Fabra, C/Roc Boronat 138, 08018 Barcelona, Spain

Received  November 2009 Revised  January 2010 Published  September 2011

We prove existence and uniqueness of entropy solutions of the Cauchy problem for the quasilinear parabolic equation $u_t$ $= div$ $a$$(u,Du)$ with initial condition $u_0$ $\in BV(\mathbb{R}^N)$, $u_0$$\geq 0$, where $a(z,\xi)$ = $\nabla_\xi f(z,\xi)$ and $f$ is a convex function of $\xi$ with linear growth as $\Vert \xi\Vert \to\infty$, satisfying other additional assumptions that cover the case of the so-called relativistic heat equation and other flux limited diffusion equations used in the theory of radiation hydrodynamics.
Citation: Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000). Google Scholar

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equations: The elliptic case,, Annali della Scuola Norm. Sup. di Pisa. Cl. Sci. (5), 3 (2004), 555. Google Scholar

[3]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case,, Arch. Rat. Mech. Anal., 176 (2005), 415. doi: 10.1007/s00205-005-0358-5. Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear elliptic equation,, Nonlinear Analysis, 61 (2005), 637. doi: 10.1016/j.na.2004.11.020. Google Scholar

[5]

F. Andreu, V. Caselles and J. M. Mazón, The Cauchy problem for a strongly degenerate quasilinear equation,, Journal European Math. Society (JEMS), 7 (2005), 361. doi: 10.4171/JEMS/32. Google Scholar

[6]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations,, Arch. Ration. Mech. Anal., 182 (2006), 269. doi: 10.1007/s00205-006-0428-3. Google Scholar

[7]

F. Andreu, V. Caselles and J. M. Mazón, Some regularity results on the 'relativistic' heat equation,, J. Diff. Equat., 245 (2008), 3639. doi: 10.1016/j.jde.2008.06.024. Google Scholar

[8]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, The Dirichlet problem associated to the relativistic heat equation,, Math. Ann., 347 (2010), 135. doi: 10.1007/s00208-009-0428-3. Google Scholar

[9]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. di Matematica Pura ed Appl. (4), 135 (1983), 293. Google Scholar

[10]

Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Normale Superiore di Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar

[11]

Ph. Bénilan and M. G. Crandall, Completely accretive operators,, in, 135 (1991), 41. Google Scholar

[12]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators,", in preparation., (). Google Scholar

[13]

M. Bertsch and R. Dal Passo, Hyperbolic phenomena in a strongly degenerate parabolic equation,, Arch Rational Mech. Anal., 117 (1992), 349. doi: 10.1007/BF00376188. Google Scholar

[14]

M. Bertsch and R. Dal Passo, A parabolic equation with a mean-curvature type operator,, in, 7 (1992), 89. Google Scholar

[15]

Ph. Blanc, On the regularity of the solutions of some degenerate parabolic equations,, Comm. in Partial Diff. Equat., 18 (1993), 821. Google Scholar

[16]

Ph. Blanc, "Sur une Classe d'Equations Paraboliques Degeneréesa une Dimension d'Espace Possedant des Solutions Discontinues,", Ph.D. Thesis, (1989). Google Scholar

[17]

Y. Brenier, Extended Monge-Kantorovich theory,, in, 1813 (2001), 91. Google Scholar

[18]

F. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains,, Proc. Nat. Acad. Sci. USA, 74 (1977), 2659. doi: 10.1073/pnas.74.7.2659. Google Scholar

[19]

J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems,, J. Diff. Equat., 156 (1999), 93. doi: 10.1006/jdeq.1998.3597. Google Scholar

[20]

V. Caselles, On the entropy conditions for some flux limited diffusion equations,, J. Diff. Equat., 250 (2011), 3311. doi: 10.1016/j.jde.2011.01.027. Google Scholar

[21]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Rational Mech. Anal., 147 (1999), 89. doi: 10.1007/s002050050146. Google Scholar

[22]

M. G. Crandall, Nonlinear semigroups and evolution equations governed by accretive operators,, in, 45 (1986), 305. Google Scholar

[23]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces,, Amer. J. Math., 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[24]

G. Dal Maso, Integral representation on $BV(\Omega)$ of $\Gamma$-limits of variational integrals,, Manuscripta Math., 30 (): 387. doi: 10.1007/BF01301259. Google Scholar

[25]

R. Dal Passo, Uniqueness of the entropy solution of a strongly degenerate parabolic equation,, Comm. in Partial Diff. Equat., 18 (1993), 265. Google Scholar

[26]

A. Chertock, A. Kurganov and P. Rosenau, Formation of discontinuities in flux-saturated degenerate parabolic equations,, Nonlinearity, 16 (2003), 1875. doi: 10.1088/0951-7715/16/6/301. Google Scholar

[27]

V. De Cicco, N. Fusco and A. Verde, On $L^1$-lower semicontinuity in $BV$,, J. Convex Anal., 12 (2005), 173. Google Scholar

[28]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni,, (Italian) [New functionals in the calculus of variations], 82 (1988), 199. Google Scholar

[29]

J. J. Duderstadt and G. A. Moses, "Inertial Confinement Fusion,", John Wiley and Sons, (1982). Google Scholar

[30]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Math., (1992). Google Scholar

[31]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Math. USSR-Sb., 10 (1970), 217. doi: 10.1070/SM1970v010n02ABEH002156. Google Scholar

[32]

R. Mc Cann and M. Puel, Construting a relativistic heat flow by transport time steps,, Ann. de Inst. Henri Poincaré Anal. Non Linéaire, 26 (2009), 2539. Google Scholar

[33]

D. Mihalas and B. Mihalas, "Foundations of Radiation Hydrodynamics,", Oxford University Press, (1984). Google Scholar

[34]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 146 (1991). Google Scholar

[35]

P. Rosenau, Free energy functionals at the high gradient limit,, Phys. Review A, 41 (1990), 2227. doi: 10.1103/PhysRevA.41.2227. Google Scholar

[36]

P. Rosenau, Tempered diffusion: A transport process with propagating front and inertial delay,, Phys. Review A, 46 (1992), 7371. doi: 10.1103/PhysRevA.46.R7371. Google Scholar

[37]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", GTM, 120 (1989). Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000). Google Scholar

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equations: The elliptic case,, Annali della Scuola Norm. Sup. di Pisa. Cl. Sci. (5), 3 (2004), 555. Google Scholar

[3]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case,, Arch. Rat. Mech. Anal., 176 (2005), 415. doi: 10.1007/s00205-005-0358-5. Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear elliptic equation,, Nonlinear Analysis, 61 (2005), 637. doi: 10.1016/j.na.2004.11.020. Google Scholar

[5]

F. Andreu, V. Caselles and J. M. Mazón, The Cauchy problem for a strongly degenerate quasilinear equation,, Journal European Math. Society (JEMS), 7 (2005), 361. doi: 10.4171/JEMS/32. Google Scholar

[6]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations,, Arch. Ration. Mech. Anal., 182 (2006), 269. doi: 10.1007/s00205-006-0428-3. Google Scholar

[7]

F. Andreu, V. Caselles and J. M. Mazón, Some regularity results on the 'relativistic' heat equation,, J. Diff. Equat., 245 (2008), 3639. doi: 10.1016/j.jde.2008.06.024. Google Scholar

[8]

F. Andreu, V. Caselles, J. M. Mazón and S. Moll, The Dirichlet problem associated to the relativistic heat equation,, Math. Ann., 347 (2010), 135. doi: 10.1007/s00208-009-0428-3. Google Scholar

[9]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. di Matematica Pura ed Appl. (4), 135 (1983), 293. Google Scholar

[10]

Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Normale Superiore di Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar

[11]

Ph. Bénilan and M. G. Crandall, Completely accretive operators,, in, 135 (1991), 41. Google Scholar

[12]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Evolution Equations Governed by Accretive Operators,", in preparation., (). Google Scholar

[13]

M. Bertsch and R. Dal Passo, Hyperbolic phenomena in a strongly degenerate parabolic equation,, Arch Rational Mech. Anal., 117 (1992), 349. doi: 10.1007/BF00376188. Google Scholar

[14]

M. Bertsch and R. Dal Passo, A parabolic equation with a mean-curvature type operator,, in, 7 (1992), 89. Google Scholar

[15]

Ph. Blanc, On the regularity of the solutions of some degenerate parabolic equations,, Comm. in Partial Diff. Equat., 18 (1993), 821. Google Scholar

[16]

Ph. Blanc, "Sur une Classe d'Equations Paraboliques Degeneréesa une Dimension d'Espace Possedant des Solutions Discontinues,", Ph.D. Thesis, (1989). Google Scholar

[17]

Y. Brenier, Extended Monge-Kantorovich theory,, in, 1813 (2001), 91. Google Scholar

[18]

F. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains,, Proc. Nat. Acad. Sci. USA, 74 (1977), 2659. doi: 10.1073/pnas.74.7.2659. Google Scholar

[19]

J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems,, J. Diff. Equat., 156 (1999), 93. doi: 10.1006/jdeq.1998.3597. Google Scholar

[20]

V. Caselles, On the entropy conditions for some flux limited diffusion equations,, J. Diff. Equat., 250 (2011), 3311. doi: 10.1016/j.jde.2011.01.027. Google Scholar

[21]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Rational Mech. Anal., 147 (1999), 89. doi: 10.1007/s002050050146. Google Scholar

[22]

M. G. Crandall, Nonlinear semigroups and evolution equations governed by accretive operators,, in, 45 (1986), 305. Google Scholar

[23]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces,, Amer. J. Math., 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[24]

G. Dal Maso, Integral representation on $BV(\Omega)$ of $\Gamma$-limits of variational integrals,, Manuscripta Math., 30 (): 387. doi: 10.1007/BF01301259. Google Scholar

[25]

R. Dal Passo, Uniqueness of the entropy solution of a strongly degenerate parabolic equation,, Comm. in Partial Diff. Equat., 18 (1993), 265. Google Scholar

[26]

A. Chertock, A. Kurganov and P. Rosenau, Formation of discontinuities in flux-saturated degenerate parabolic equations,, Nonlinearity, 16 (2003), 1875. doi: 10.1088/0951-7715/16/6/301. Google Scholar

[27]

V. De Cicco, N. Fusco and A. Verde, On $L^1$-lower semicontinuity in $BV$,, J. Convex Anal., 12 (2005), 173. Google Scholar

[28]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni,, (Italian) [New functionals in the calculus of variations], 82 (1988), 199. Google Scholar

[29]

J. J. Duderstadt and G. A. Moses, "Inertial Confinement Fusion,", John Wiley and Sons, (1982). Google Scholar

[30]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Math., (1992). Google Scholar

[31]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Math. USSR-Sb., 10 (1970), 217. doi: 10.1070/SM1970v010n02ABEH002156. Google Scholar

[32]

R. Mc Cann and M. Puel, Construting a relativistic heat flow by transport time steps,, Ann. de Inst. Henri Poincaré Anal. Non Linéaire, 26 (2009), 2539. Google Scholar

[33]

D. Mihalas and B. Mihalas, "Foundations of Radiation Hydrodynamics,", Oxford University Press, (1984). Google Scholar

[34]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 146 (1991). Google Scholar

[35]

P. Rosenau, Free energy functionals at the high gradient limit,, Phys. Review A, 41 (1990), 2227. doi: 10.1103/PhysRevA.41.2227. Google Scholar

[36]

P. Rosenau, Tempered diffusion: A transport process with propagating front and inertial delay,, Phys. Review A, 46 (1992), 7371. doi: 10.1103/PhysRevA.46.R7371. Google Scholar

[37]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", GTM, 120 (1989). Google Scholar

[1]

Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487

[2]

Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019

[3]

Raul Borsche, Axel Klar, T. N. Ha Pham. Nonlinear flux-limited models for chemotaxis on networks. Networks & Heterogeneous Media, 2017, 12 (3) : 381-401. doi: 10.3934/nhm.2017017

[4]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[5]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[6]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[7]

Gui-Qiang Chen, Kenneth Hvistendahl Karlsen. Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Communications on Pure & Applied Analysis, 2005, 4 (2) : 241-266. doi: 10.3934/cpaa.2005.4.241

[8]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure & Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

[9]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[10]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2019060

[11]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[12]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[13]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[14]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[15]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[16]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[17]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[18]

Stephen Pankavich, Petronela Radu. Nonlinear instability of solutions in parabolic and hyperbolic diffusion. Evolution Equations & Control Theory, 2013, 2 (2) : 403-422. doi: 10.3934/eect.2013.2.403

[19]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[20]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]