December  2011, 31(4): 1197-1218. doi: 10.3934/dcds.2011.31.1197

On the regularization of the collision solutions of the one-center problem with weak forces

1. 

BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park, 48160 Derio, Bizkaia,, Spain

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

Received  January 2010 Revised  March 2010 Published  September 2011

We study the possible regularization of collision solutions for one centre problems with a weak singularity. In the case of logarithmic singularities, we consider the method of regularization via smoothing of the potential. With this technique, we prove that the extended flow, where collision solutions are replaced with transmission trajectories, is continuous, though not differentiable, with respect to the initial data.
Citation: Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197
References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I,, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223. Google Scholar

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN, (2008). Google Scholar

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323. doi: 10.3934/cpaa.2003.2.323. Google Scholar

[4]

E. De Giorgi, Conjectures concerning some evolution problems,, A celebration of John F. Nash, 81 (1996), 255. doi: 10.1215/S0012-7094-96-08114-4. Google Scholar

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems,, Astrophysical Journal, 409 (1993), 60. doi: 10.1086/172641. Google Scholar

[6]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92. Google Scholar

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Invent. Math., 155 (2004), 305. doi: 10.1007/s00222-003-0322-7. Google Scholar

[8]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1977), 961. doi: 10.2307/2373993. Google Scholar

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?,, Astrophysical Journal, 349 (1990), 562. doi: 10.1086/168343. Google Scholar

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization,, J. Reine Angew. Math., 218 (1965), 204. doi: 10.1515/crll.1965.218.204. Google Scholar

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99. doi: 10.1007/BF02404404. Google Scholar

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions,, Comment. Math. Helv., 56 (1981), 524. doi: 10.1007/BF02566226. Google Scholar

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609. doi: 10.1002/cpa.3160230406. Google Scholar

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics,", Classics in Mathematics, (1995). Google Scholar

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693. doi: 10.1088/0305-4470/36/28/302. Google Scholar

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies,", Academic Press, (1967). Google Scholar

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials,, MNRAS, 292 (1997), 905. Google Scholar

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", 4th edition, (1959). Google Scholar

show all references

References:
[1]

S. J. Aarseth, Dynamical evolution of clusters of galaxies I,, Monthly Notices of the Royal Astronomical Society, 126 (1963), 223. Google Scholar

[2]

V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN, (2008). Google Scholar

[3]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two-body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323. doi: 10.3934/cpaa.2003.2.323. Google Scholar

[4]

E. De Giorgi, Conjectures concerning some evolution problems,, A celebration of John F. Nash, 81 (1996), 255. doi: 10.1215/S0012-7094-96-08114-4. Google Scholar

[5]

C. C. Dyer and P. S. S. Ip, Softening in N-body simulations of collisionless systems,, Astrophysical Journal, 409 (1993), 60. doi: 10.1086/172641. Google Scholar

[6]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92. Google Scholar

[7]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Invent. Math., 155 (2004), 305. doi: 10.1007/s00222-003-0322-7. Google Scholar

[8]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1977), 961. doi: 10.2307/2373993. Google Scholar

[9]

L. Hernquist and J. E. Barnes, Are some n-body algorithms intrinsically less collisional than others?,, Astrophysical Journal, 349 (1990), 562. doi: 10.1086/168343. Google Scholar

[10]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization,, J. Reine Angew. Math., 218 (1965), 204. doi: 10.1515/crll.1965.218.204. Google Scholar

[11]

T. Levi-Civita, Sur la régularisation du problème des trois corps,, Acta Math., 42 (1920), 99. doi: 10.1007/BF02404404. Google Scholar

[12]

R. McGehee, Double collisions for a classical particle system with nongravitational interactions,, Comment. Math. Helv., 56 (1981), 524. doi: 10.1007/BF02566226. Google Scholar

[13]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609. doi: 10.1002/cpa.3160230406. Google Scholar

[14]

C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics,", Classics in Mathematics, (1995). Google Scholar

[15]

C. Stoica and A. Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693. doi: 10.1088/0305-4470/36/28/302. Google Scholar

[16]

V. G. Szebehely, "Theory of Orbits -- The Restricted Problem of Three Bodies,", Academic Press, (1967). Google Scholar

[17]

J. Touma and S. Tremaine, A map for eccentric orbits in non-axisymmetric potentials,, MNRAS, 292 (1997), 905. Google Scholar

[18]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies,", 4th edition, (1959). Google Scholar

[1]

G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure & Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323

[2]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[3]

Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611

[4]

Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 785-826. doi: 10.3934/dcds.2009.23.785

[5]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[6]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[8]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[9]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[10]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[11]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[12]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[13]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[14]

Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833

[15]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[16]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[17]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

[18]

Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161

[19]

Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure & Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675

[20]

Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 909-932. doi: 10.3934/dcds.2009.24.909

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]