December  2011, 31(4): 1219-1231. doi: 10.3934/dcds.2011.31.1219

Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem

1. 

SISSA, via Bonomea 265, 34136 Trieste, Italy

Received  December 2009 Revised  December 2010 Published  September 2011

We present a recent existence result concerning the quasistatic evolution of cracks in hyperelastic brittle materials, in the framework of finite elasticity with non-interpenetration. In particular, here we consider the problem where no Dirichlet conditions are imposed, the boundary is traction-free, and the body is subject only to time-dependent volume forces. This allows us to present the main ideas of the proof in a simpler way, avoiding some of the technicalities needed in the general case, studied in [9].
Citation: Gianni Dal Maso, Giuliano Lazzaroni. Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1219-1231. doi: 10.3934/dcds.2011.31.1219
References:
[1]

L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in $SBV(\Omega,\R^k)$,, Nonlinear Anal., 23 (1994), 405.  doi: 10.1016/0362-546X(94)90180-5.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

J. M. Ball, Some open problems in elasticity,, in, (2002), 3.   Google Scholar

[4]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.  doi: 10.1007/s10659-007-9107-3.  Google Scholar

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211.  doi: 10.1007/s00205-002-0240-7.  Google Scholar

[6]

P. G. Ciarlet, "Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[7]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity,, Arch. Ration. Mech. Anal., 97 (1987), 171.  doi: 10.1007/BF00250807.  Google Scholar

[8]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[9]

G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257.   Google Scholar

[10]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[11]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199.   Google Scholar

[12]

H. Federer, "Geometric Measure Theory,", Die Grundlehren der Mathematischen Wissenschaften, 153 (1969).   Google Scholar

[13]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465.  doi: 10.1002/cpa.3039.  Google Scholar

[14]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319.  doi: 10.1016/S0022-5096(98)00034-9.  Google Scholar

[15]

G. A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55.  doi: 10.1515/CRELLE.2006.044.  Google Scholar

[16]

N. Fusco, C. Leone, R. March and A. Verde, A lower semi-continuity result for polyconvex functionals in SBV,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 321.  doi: 10.1017/S0308210500004571.  Google Scholar

[17]

A. Giacomini and M. Ponsiglione, Non interpenetration of matter for $SBV$-deformations of hyperelastic brittle materials,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1019.  doi: 10.1017/S0308210507000121.  Google Scholar

[18]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163.   Google Scholar

[19]

G. Lazzaroni, Quasistatic crack growth in finite elasticity with Lipschitz data,, Ann. Mat. Pura Appl. (4), 190 (2011), 165.  doi: 10.1007/s10231-010-0145-2.  Google Scholar

[20]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461.   Google Scholar

[21]

R. W. Ogden, Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,, Proc. Roy. Soc. London A, 326 (1972), 565.  doi: 10.1098/rspa.1972.0026.  Google Scholar

[22]

R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids,, Proc. Roy. Soc. London A, 328 (1972), 567.  doi: 10.1098/rspa.1972.0096.  Google Scholar

show all references

References:
[1]

L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in $SBV(\Omega,\R^k)$,, Nonlinear Anal., 23 (1994), 405.  doi: 10.1016/0362-546X(94)90180-5.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

J. M. Ball, Some open problems in elasticity,, in, (2002), 3.   Google Scholar

[4]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.  doi: 10.1007/s10659-007-9107-3.  Google Scholar

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211.  doi: 10.1007/s00205-002-0240-7.  Google Scholar

[6]

P. G. Ciarlet, "Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[7]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity,, Arch. Ration. Mech. Anal., 97 (1987), 171.  doi: 10.1007/BF00250807.  Google Scholar

[8]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[9]

G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 257.   Google Scholar

[10]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[11]

E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199.   Google Scholar

[12]

H. Federer, "Geometric Measure Theory,", Die Grundlehren der Mathematischen Wissenschaften, 153 (1969).   Google Scholar

[13]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465.  doi: 10.1002/cpa.3039.  Google Scholar

[14]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319.  doi: 10.1016/S0022-5096(98)00034-9.  Google Scholar

[15]

G. A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55.  doi: 10.1515/CRELLE.2006.044.  Google Scholar

[16]

N. Fusco, C. Leone, R. March and A. Verde, A lower semi-continuity result for polyconvex functionals in SBV,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 321.  doi: 10.1017/S0308210500004571.  Google Scholar

[17]

A. Giacomini and M. Ponsiglione, Non interpenetration of matter for $SBV$-deformations of hyperelastic brittle materials,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1019.  doi: 10.1017/S0308210507000121.  Google Scholar

[18]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163.   Google Scholar

[19]

G. Lazzaroni, Quasistatic crack growth in finite elasticity with Lipschitz data,, Ann. Mat. Pura Appl. (4), 190 (2011), 165.  doi: 10.1007/s10231-010-0145-2.  Google Scholar

[20]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461.   Google Scholar

[21]

R. W. Ogden, Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids,, Proc. Roy. Soc. London A, 326 (1972), 565.  doi: 10.1098/rspa.1972.0026.  Google Scholar

[22]

R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids,, Proc. Roy. Soc. London A, 328 (1972), 567.  doi: 10.1098/rspa.1972.0096.  Google Scholar

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[7]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[10]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[13]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[14]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[15]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]