2011, 31(3): 763-777. doi: 10.3934/dcds.2011.31.763

On the birth of minimal sets for perturbed reversible vector fields

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

2. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083–859 Campinas, SP, Brazil, Brazil

Received  June 2010 Revised  May 2011 Published  August 2011

The results in this paper fit into a program to study the existence of periodic orbits, invariant cylinders and tori filled with periodic orbits in perturbed reversible systems. Here we focus on bifurcations of one-parameter families of periodic orbits for reversible vector fields in $\mathbb{R}^4$. The main used tools are normal forms theory, Lyapunov-Schmidt method and averaging theory.
Citation: Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763
References:
[1]

G. Belitskii, $C^\infty$-normal forms of local vector fields. Symmetry and perturbation theory,, Acta Appl. Math., 70 (2002), 23. doi: 10.1023/A:1013909812387.

[2]

H. Broer, G. Huitema and M. Sevryuk, "Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1645).

[3]

C. A. Buzzi, L. A. Roberto and M. A. Teixeira, Branching of periodic orbits in reversible Hamiltonian systems,, in, 380 (2010), 46.

[4]

R. L. Devaney, Reversible diffeomorphisms and flows,, Transactions of the American Mathematical Society, 218 (1976), 89. doi: 10.1090/S0002-9947-1976-0402815-3.

[5]

G. Gaeta, Normal forms of reversible dynamical systems,, International J. of Theoretical Physics, 33 (1994), 1917. doi: 10.1007/BF00671033.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", Applied Mathematical Sciences, 42 (1983).

[7]

J. Hale, "Ordinary Differential Equations,", Dover Publications, (2009).

[8]

A. Jacquemard, M. Firmino Silva Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105. doi: 10.1007/s10231-006-0036-8.

[9]

J. Knobloch and A. Vanderbauwhede, A general reduction method for periodic solutions in conservative and reversible systems,, J. Dynam. Differential Equations, 8 (1996), 71.

[10]

M. F. S. Lima and M. A. Teixeira, Families of periodic orbits in resonant reversible systems,, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 511.

[11]

J. Llibre, A. C. O. Mereu and M. A. Teixeira, Invariant tori filled with periodic orbits for $4$-dimensional $C^2$ differential systems in presence of resonance,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20 (2010), 3341. doi: 10.1142/S0218127410027738.

[12]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and Reversible Vector Fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.

[13]

M. Matveyev, Structure of the sets of invariant tori and problems of stability in reversible systems,, in, 533 (1999), 489.

[14]

J. Murdock, J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).

[15]

M. Sevryuk, Lower-dimensional tori in reversible systems,, Chaos, 1 (1991), 160. doi: 10.1063/1.165858.

[16]

M. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8.

[17]

C.-W. Shih, Bifurcations of symmetric periodic orbits near equilibrium in reversible systems,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 7 (1997), 569. doi: 10.1142/S0218127497000406.

[18]

A. Vanderbauwhede, "Local Bifurcation and Symmetry,", Res. Notes in Math., 75 (1982).

[19]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Universitext, (1990).

[20]

T. Wagenknecht, "An Analytical Study of a Two Degrees of Freedom Hamiltonian System Associated to the Reversible Hyperbolic Umbilic,", Ph.D. thesis, (1999).

show all references

References:
[1]

G. Belitskii, $C^\infty$-normal forms of local vector fields. Symmetry and perturbation theory,, Acta Appl. Math., 70 (2002), 23. doi: 10.1023/A:1013909812387.

[2]

H. Broer, G. Huitema and M. Sevryuk, "Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1645).

[3]

C. A. Buzzi, L. A. Roberto and M. A. Teixeira, Branching of periodic orbits in reversible Hamiltonian systems,, in, 380 (2010), 46.

[4]

R. L. Devaney, Reversible diffeomorphisms and flows,, Transactions of the American Mathematical Society, 218 (1976), 89. doi: 10.1090/S0002-9947-1976-0402815-3.

[5]

G. Gaeta, Normal forms of reversible dynamical systems,, International J. of Theoretical Physics, 33 (1994), 1917. doi: 10.1007/BF00671033.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", Applied Mathematical Sciences, 42 (1983).

[7]

J. Hale, "Ordinary Differential Equations,", Dover Publications, (2009).

[8]

A. Jacquemard, M. Firmino Silva Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105. doi: 10.1007/s10231-006-0036-8.

[9]

J. Knobloch and A. Vanderbauwhede, A general reduction method for periodic solutions in conservative and reversible systems,, J. Dynam. Differential Equations, 8 (1996), 71.

[10]

M. F. S. Lima and M. A. Teixeira, Families of periodic orbits in resonant reversible systems,, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 511.

[11]

J. Llibre, A. C. O. Mereu and M. A. Teixeira, Invariant tori filled with periodic orbits for $4$-dimensional $C^2$ differential systems in presence of resonance,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20 (2010), 3341. doi: 10.1142/S0218127410027738.

[12]

R. M. Martins and M. A. Teixeira, On the Similarity of Hamiltonian and Reversible Vector Fields in 4D,, Communications on Pure and Applied Analysis, 10 (2011), 1257.

[13]

M. Matveyev, Structure of the sets of invariant tori and problems of stability in reversible systems,, in, 533 (1999), 489.

[14]

J. Murdock, J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).

[15]

M. Sevryuk, Lower-dimensional tori in reversible systems,, Chaos, 1 (1991), 160. doi: 10.1063/1.165858.

[16]

M. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8.

[17]

C.-W. Shih, Bifurcations of symmetric periodic orbits near equilibrium in reversible systems,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 7 (1997), 569. doi: 10.1142/S0218127497000406.

[18]

A. Vanderbauwhede, "Local Bifurcation and Symmetry,", Res. Notes in Math., 75 (1982).

[19]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,", Universitext, (1990).

[20]

T. Wagenknecht, "An Analytical Study of a Two Degrees of Freedom Hamiltonian System Associated to the Reversible Hyperbolic Umbilic,", Ph.D. thesis, (1999).

[1]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[2]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[3]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[4]

Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162

[5]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[6]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[7]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[8]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[9]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[10]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[11]

D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907

[12]

Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136

[13]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[14]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[15]

Haihua Liang, Yulin Zhao. Quadratic perturbations of a class of quadratic reversible systems with one center. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 325-335. doi: 10.3934/dcds.2010.27.325

[16]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[17]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[18]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[19]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[20]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]