\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Harnack inequality for fractional Laplace equations with lower order terms

Abstract / Introduction Related Papers Cited by
  • We establish a Harnack inequality of fractional Laplace equations without imposing sign condition on the coefficient of zero order term via the Moser's iteration and John-Nirenberg inequality.
    Mathematics Subject Classification: Primary: 35J70, 35B45, 35S05, 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Anal., 17 (2002), 375-388doi: 10.1023/A:1016378210944.

    [2]

    X. Cabre and Y. SireNonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates, preprint, arXiv:1012.0867v1.

    [3]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.

    [4]

    Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501.doi: 10.1007/s002080050232.

    [5]

    E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.

    [6]

    Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations," Courant Lecture Notes in Mathematics, 1, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1997.

    [7]

    Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math. J., 99 (1999), 489-542.doi: 10.1215/S0012-7094-99-09916-7.

    [8]

    F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.doi: 10.1002/cpa.3160140317.

    [9]

    M. KassmannThe classical Harnack inequality fails for non-local operators, preprint.

    [10]

    B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.doi: 10.1090/S0002-9947-1974-0340523-6.

    [11]

    E. Stein, "Singular Integrals and Differentiability Properties of Function," Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1970.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return