• Previous Article
    Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains
  • DCDS Home
  • This Issue
  • Next Article
    Computation of whiskered invariant tori and their associated manifolds: New fast algorithms
April  2012, 32(4): 1355-1389. doi: 10.3934/dcds.2012.32.1355

Solutions to a fluid-structure interaction free boundary problem

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

2. 

Department of Mathematics, The Petroleum Institute, Abu Dhabi, United Arab Emirates

Received  September 2010 Revised  June 2011 Published  October 2011

Our main result is the existence of solutions to the free boundary fluid-structure interaction system. The system consists of a Navier-Stokes equation and a wave equation defined in two different but adjacent domains. The interaction is captured by stress and velocity matching conditions on the free moving boundary lying in between the two domains. We prove the local existence of a solution when the initial velocity of the fluid belongs to $H^{3}$ while the velocity of the elastic body is in $H^{2}$.
Citation: Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355
References:
[1]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, Georgian Math. J., 15 (2008), 403. Google Scholar

[2]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15. Google Scholar

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in, 440 (2007), 55. Google Scholar

[4]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model,, Indiana Univ. Math. J., 57 (2008), 1173. doi: 10.1512/iumj.2008.57.3284. Google Scholar

[5]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 233. doi: 10.1007/s00021-008-0257-2. Google Scholar

[6]

M. Boulakia, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid,, J. Math. Fluid Mech., 9 (2007), 262. doi: 10.1007/s00021-005-0201-7. Google Scholar

[7]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777. Google Scholar

[8]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[9]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[10]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2006), 303. doi: 10.1007/s00205-005-0385-2. Google Scholar

[11]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model,, Rev. Mat. Complut., 14 (2001), 523. Google Scholar

[12]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[13]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid,, Dedicated to Philippe Bénilan, 3 (2003), 419. doi: 10.1007/s00028-003-0110-1. Google Scholar

[14]

M. À. Fernández and M. Moubachir, An exact block-Newton algorithm for solving fluid-structure interaction problems,, C. R. Math. Acad. Sci. Paris, 336 (2003), 681. Google Scholar

[15]

M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity,, J. Math. Systems Estim. Control, 8 (1998). Google Scholar

[16]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, in, 2009 (): 424. Google Scholar

[17]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[18]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system,, J. Differential Equations, 247 (2009), 1452. doi: 10.1016/j.jde.2009.06.005. Google Scholar

[19]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system,, Adv. Differential Equations, 15 (2010), 231. Google Scholar

[20]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary,, Nonlinearity, 24 (2011), 159. doi: 10.1088/0951-7715/24/1/008. Google Scholar

[21]

I. Kukavica and A. Tuffaha, Local existence of strong solutions for a free-boundary fluid-structure interaction system,, in preparation., (). Google Scholar

[22]

J.-L. Lions, "Quelques Méthodes de Résolution des Oroblèmes aux Limites Non Linéaires,", Dunod, (1969). Google Scholar

[23]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl. (9), 65 (1986), 149. Google Scholar

[24]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications,", Vol. II, (1972). Google Scholar

[25]

I. Lasiecka and A. Tuffaha, Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid-structure interaction,, Systems Control Lett., 58 (2009), 499. doi: 10.1016/j.sysconle.2009.02.010. Google Scholar

[26]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control. Applications to Fluid Structure Interactions,", Pure and Applied Mathematics (Boca Raton), 277 (2006). Google Scholar

[27]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537. doi: 10.3934/dcdsb.2010.14.1537. Google Scholar

[28]

J. A. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 161 (2002), 113. Google Scholar

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977). Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Reprint of the 1984 edition, (1984). Google Scholar

show all references

References:
[1]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, Georgian Math. J., 15 (2008), 403. Google Scholar

[2]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15. Google Scholar

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in, 440 (2007), 55. Google Scholar

[4]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model,, Indiana Univ. Math. J., 57 (2008), 1173. doi: 10.1512/iumj.2008.57.3284. Google Scholar

[5]

H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11 (2009), 233. doi: 10.1007/s00021-008-0257-2. Google Scholar

[6]

M. Boulakia, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid,, J. Math. Fluid Mech., 9 (2007), 262. doi: 10.1007/s00021-005-0201-7. Google Scholar

[7]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777. Google Scholar

[8]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[9]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[10]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2006), 303. doi: 10.1007/s00205-005-0385-2. Google Scholar

[11]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model,, Rev. Mat. Complut., 14 (2001), 523. Google Scholar

[12]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[13]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid,, Dedicated to Philippe Bénilan, 3 (2003), 419. doi: 10.1007/s00028-003-0110-1. Google Scholar

[14]

M. À. Fernández and M. Moubachir, An exact block-Newton algorithm for solving fluid-structure interaction problems,, C. R. Math. Acad. Sci. Paris, 336 (2003), 681. Google Scholar

[15]

M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity,, J. Math. Systems Estim. Control, 8 (1998). Google Scholar

[16]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, in, 2009 (): 424. Google Scholar

[17]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[18]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system,, J. Differential Equations, 247 (2009), 1452. doi: 10.1016/j.jde.2009.06.005. Google Scholar

[19]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system,, Adv. Differential Equations, 15 (2010), 231. Google Scholar

[20]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary,, Nonlinearity, 24 (2011), 159. doi: 10.1088/0951-7715/24/1/008. Google Scholar

[21]

I. Kukavica and A. Tuffaha, Local existence of strong solutions for a free-boundary fluid-structure interaction system,, in preparation., (). Google Scholar

[22]

J.-L. Lions, "Quelques Méthodes de Résolution des Oroblèmes aux Limites Non Linéaires,", Dunod, (1969). Google Scholar

[23]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl. (9), 65 (1986), 149. Google Scholar

[24]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications,", Vol. II, (1972). Google Scholar

[25]

I. Lasiecka and A. Tuffaha, Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid-structure interaction,, Systems Control Lett., 58 (2009), 499. doi: 10.1016/j.sysconle.2009.02.010. Google Scholar

[26]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control. Applications to Fluid Structure Interactions,", Pure and Applied Mathematics (Boca Raton), 277 (2006). Google Scholar

[27]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537. doi: 10.3934/dcdsb.2010.14.1537. Google Scholar

[28]

J. A. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 161 (2002), 113. Google Scholar

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977). Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Reprint of the 1984 edition, (1984). Google Scholar

[1]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[2]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[3]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[4]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[5]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[6]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[7]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[8]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[9]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[10]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[11]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[12]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[13]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[14]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[15]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[16]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[17]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[18]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[19]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[20]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]