2012, 32(5): 1775-1799. doi: 10.3934/dcds.2012.32.1775

Breather continuation from infinity in nonlinear oscillator chains

1. 

Laboratoire Jean Kuntzmann, UMR CNRS 5224, BP 53, 38041 Grenoble Cedex 9, France

2. 

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Received  November 2010 Revised  September 2011 Published  January 2012

Existence of large-amplitude time-periodic breathers localized near a single site is proved for the discrete Klein--Gordon equation, in the case when the derivative of the on-site potential has a compact support. Breathers are obtained at small coupling between oscillators and under nonresonance conditions. Our method is different from the classical anti-continuum limit developed by MacKay and Aubry, and yields in general branches of breather solutions that cannot be captured with this approach. When the coupling constant goes to zero, the amplitude and period of oscillations at the excited site go to infinity. Our method is based on near-identity transformations, analysis of singular limits in nonlinear oscillator equations, and fixed-point arguments.
Citation: Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775
References:
[1]

J. F. R. Archilla, J. Cuevas, B. Sánchez-Rey and A. Alvarez, Demonstration of the stability or instability of multibreathers at low coupling,, Physica D, 180 (2003), 235.

[2]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization,, Lattice Dynamics (Paris, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8.

[3]

S. Aubry, G. Kopidakis and V. Kadelburg, Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems,, Discrete and Continuous Dynamical Systems B, 1 (2001), 271.

[4]

D. Bambusi, Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 9 (1996), 433. doi: 10.1088/0951-7715/9/2/009.

[5]

J. Fura and S. Rybicki, Periodic solutions of second order Hamiltonian systems bifurcating from infinity,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 24 (2007), 471.

[6]

G. James, Centre manifold reduction for quasilinear discrete systems,, J. Nonlinear Sci., 13 (2003), 27. doi: 10.1007/s00332-002-0525-x.

[7]

G. James, A. Levitt and C. Ferreira, Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing,, Applicable Analysis, 89 (2010), 1447. doi: 10.1080/00036810903437788.

[8]

G. James, B. Sánchez-Rey and J. Cuevas, Breathers in inhomogeneous nonlinear lattices: An analysis via center manifold reduction,, Rev. Math. Phys., 21 (2009), 1. doi: 10.1142/S0129055X09003578.

[9]

V. Koukouloyannis and P. Kevrekidis, On the stability of multibreathers in Klein-Gordon chains,, Nonlinearity, 22 (2009), 2269. doi: 10.1088/0951-7715/22/9/011.

[10]

R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623. doi: 10.1088/0951-7715/7/6/006.

[11]

R. S. MacKay and J.-A. Sepulchre, Stability of discrete breathers,, Localization in Nonlinear Lattices (Dresden, 119 (1998), 148. doi: 10.1016/S0167-2789(98)00073-6.

[12]

J. L. Marín and S. Aubry, Finite size effects on instabilities of discrete breathers,, Physica D, 119 (1998), 163.

[13]

A. Mielke and C. Patz, Dispersive stability of infinite-dimensional Hamiltonian systems on lattices,, Applicable Analysis, 89 (2010), 1493. doi: 10.1080/00036810903517605.

[14]

A. Pankov, "Travelling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices,", Imperial College Press, (2005). doi: 10.1142/9781860947216.

[15]

M. Peyrard, S. Cuesta-López and G. James, Modelling DNA at the mesoscale: A challenge for nonlinear science?,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/6/T02.

[16]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, J. Biol. Phys., 35 (2009), 73. doi: 10.1007/s10867-009-9127-2.

[17]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004). doi: 10.1088/0951-7715/17/2/R01.

[18]

J.-A. Sepulchre and R. S. MacKay, Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators,, Nonlinearity, 10 (1997), 679. doi: 10.1088/0951-7715/10/3/006.

[19]

D. Treschev, Travelling waves in FPU lattices,, Discrete and Continuous Dynamical Systems A, 11 (2004), 867. doi: 10.3934/dcds.2004.11.867.

[20]

G. Weber, Sharp DNA denaturation due to solvent interaction,, Europhys. Lett., 73 (2006). doi: 10.1209/epl/i2005-10466-6.

show all references

References:
[1]

J. F. R. Archilla, J. Cuevas, B. Sánchez-Rey and A. Alvarez, Demonstration of the stability or instability of multibreathers at low coupling,, Physica D, 180 (2003), 235.

[2]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization,, Lattice Dynamics (Paris, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8.

[3]

S. Aubry, G. Kopidakis and V. Kadelburg, Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems,, Discrete and Continuous Dynamical Systems B, 1 (2001), 271.

[4]

D. Bambusi, Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 9 (1996), 433. doi: 10.1088/0951-7715/9/2/009.

[5]

J. Fura and S. Rybicki, Periodic solutions of second order Hamiltonian systems bifurcating from infinity,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 24 (2007), 471.

[6]

G. James, Centre manifold reduction for quasilinear discrete systems,, J. Nonlinear Sci., 13 (2003), 27. doi: 10.1007/s00332-002-0525-x.

[7]

G. James, A. Levitt and C. Ferreira, Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing,, Applicable Analysis, 89 (2010), 1447. doi: 10.1080/00036810903437788.

[8]

G. James, B. Sánchez-Rey and J. Cuevas, Breathers in inhomogeneous nonlinear lattices: An analysis via center manifold reduction,, Rev. Math. Phys., 21 (2009), 1. doi: 10.1142/S0129055X09003578.

[9]

V. Koukouloyannis and P. Kevrekidis, On the stability of multibreathers in Klein-Gordon chains,, Nonlinearity, 22 (2009), 2269. doi: 10.1088/0951-7715/22/9/011.

[10]

R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623. doi: 10.1088/0951-7715/7/6/006.

[11]

R. S. MacKay and J.-A. Sepulchre, Stability of discrete breathers,, Localization in Nonlinear Lattices (Dresden, 119 (1998), 148. doi: 10.1016/S0167-2789(98)00073-6.

[12]

J. L. Marín and S. Aubry, Finite size effects on instabilities of discrete breathers,, Physica D, 119 (1998), 163.

[13]

A. Mielke and C. Patz, Dispersive stability of infinite-dimensional Hamiltonian systems on lattices,, Applicable Analysis, 89 (2010), 1493. doi: 10.1080/00036810903517605.

[14]

A. Pankov, "Travelling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices,", Imperial College Press, (2005). doi: 10.1142/9781860947216.

[15]

M. Peyrard, S. Cuesta-López and G. James, Modelling DNA at the mesoscale: A challenge for nonlinear science?,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/6/T02.

[16]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, J. Biol. Phys., 35 (2009), 73. doi: 10.1007/s10867-009-9127-2.

[17]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004). doi: 10.1088/0951-7715/17/2/R01.

[18]

J.-A. Sepulchre and R. S. MacKay, Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators,, Nonlinearity, 10 (1997), 679. doi: 10.1088/0951-7715/10/3/006.

[19]

D. Treschev, Travelling waves in FPU lattices,, Discrete and Continuous Dynamical Systems A, 11 (2004), 867. doi: 10.3934/dcds.2004.11.867.

[20]

G. Weber, Sharp DNA denaturation due to solvent interaction,, Europhys. Lett., 73 (2006). doi: 10.1209/epl/i2005-10466-6.

[1]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[2]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[3]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[4]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[5]

Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711

[6]

Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525

[7]

Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057

[8]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain . Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[9]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[10]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[11]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[12]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[13]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[14]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[15]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017215

[16]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

[17]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[18]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[19]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[20]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]