2012, 32(5): 1835-1855. doi: 10.3934/dcds.2012.32.1835

Blow-up phenomena for the 3D compressible MHD equations

1. 

Department of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275

2. 

Department of Mathematical Sciences, South China Normal University, Guangzhou, 510631

3. 

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275

Received  December 2010 Revised  August 2011 Published  January 2012

In this paper, we study the three-dimensional(3D) compressible magnetohydrodynamic equations. Firstly, we obtain a blow-up criterion for the local strong solutions in terms of the gradient of the velocity, which is similar to the Beal-Kato-Majda criterion(see [1]) for the ideal incompressible flow. Secondly, we extend the well-known Serrin's blow-up criterion for the 3D incompressible Navier-Stokes equations to the 3D compressible magnetohydrodynamic equations. In addition, initial vacuum is allowed in our cases.
Citation: Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835
References:
[1]

J. T. Beale, T. Kato and A. Majda., Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Commun. Math. Phys, 94 (1984), 61. doi: 10.1007/BF01212349.

[2]

R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443. doi: 10.1007/s002200050067.

[3]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations,, Comm. Math. Phys., 275 (2007), 861. doi: 10.1007/s00220-007-0319-y.

[4]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Comm. Math. Phys., 266 (2006), 595. doi: 10.1007/s00220-006-0052-y.

[5]

Y. Du, Y. Liu and Z. Yao, Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations,, J. Math. Phys., 50 (2009).

[6]

G. Duvaut and J. L. Lions, Inequation en theremoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005.

[8]

J. Fan and S. Jiang, Blow-up criteria for the Navier-Stokes equations of compressible fluids,, J. Hyper. Diff. Eqns., 5 (2008), 167. doi: 10.1142/S0219891608001386.

[9]

J. Fan, S. Jiang and Y. Ou, A blow-up criterion for three-dimensional compressible viscous heat-conductive flows,, Annales de l'Institut Henri Poincaré Analysis Non Linéaire, 27 (2010), 337. doi: 10.1016/j.anihpc.2009.09.012.

[10]

C. Foias and R. Temam, Gevrey class regulairity for the solutions of the Navier-Stokes equations,, J. Funct. Anal., 87 (1989), 359. doi: 10.1016/0022-1236(89)90015-3.

[11]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differ. Equations, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002.

[12]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, J. Funct. Anal., 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009.

[13]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetodynamic equations,, J. Differ. Equations, 238 (2007), 1. doi: 10.1016/j.jde.2007.03.023.

[14]

D. Hoff, Compressible flow in a half-space with Navier boundary conditions,, J. Math. Fluid Mech., 7 (2005), 315. doi: 10.1007/s00021-004-0123-9.

[15]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows,, Comm. Math. Phys., 283 (2008), 255. doi: 10.1007/s00220-008-0497-2.

[16]

X. Hu and D. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations,, J. Differential Equations, 245 (2008), 2176. doi: 10.1016/j.jde.2008.07.019.

[17]

X. Hu and D. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983.

[18]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Ration. Mech. Anal., 197 (2010), 203. doi: 10.1007/s00205-010-0295-9.

[19]

X. Huang and Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations,, Sci. China Math., 53 (2010), 671. doi: 10.1007/s11425-010-0042-6.

[20]

X. Huang, J. Li and Z. Xin, Serrin type criterion for the three-dimensional viscous compressible flows,, SIAM J. Math. Anal., 43 (2011), 1872. doi: 10.1137/100814639.

[21]

M. Lu, Y. Du and Z. Yao, Blow-up criterion for compressible MHD equations,, J. Math. Anal. Appl., 379 (2011), 425. doi: 10.1016/j.jmaa.2011.01.043.

[22]

M. Lu, Y. Du, Z. Yao and Z. Zhang, A blow-up criterion for the 3D compressible MHD equations,, Comm. Pure Appl. Math., 11 (2012), 1167.

[23]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, J. Diff. Eqns., 245 (2008), 1762. doi: 10.1016/j.jde.2008.07.007.

[24]

O. Rozanova, Blow-up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy,, in, 67 (2009).

[25]

M. Sermange and R. Teman, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635. doi: 10.1002/cpa.3160360506.

[26]

Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3D compressible Navier-Stokes equations,, J. Math. Pures Appl., 95 (2011), 36. doi: 10.1016/j.matpur.2010.08.001.

[27]

Z. Tan and Y. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force,, Nonlinear Anal., 71 (2009), 5866. doi: 10.1016/j.na.2009.05.012.

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", Second edition, (1995).

[29]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068.

[30]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear equations,, Mat. Sbornik (N.S.), 87(129) (1972), 504.

[31]

J. Wu, Bounds and new approaches for the 3D MHD equations,, J. Nonlinear Sci., 12 (2002), 395. doi: 10.1007/s00332-002-0486-0.

[32]

Z. Xin, Blow-up of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[33]

Z. Zhang, Remarks on the regularity criteria for generalized MHD equations,, J. Math. Anal. Appl., 375 (2011), 799. doi: 10.1016/j.jmaa.2010.10.017.

[34]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881. doi: 10.3934/dcds.2005.12.881.

[35]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, Internat. J. Non-Linear Mech., 41 (2006), 1174. doi: 10.1016/j.ijnonlinmec.2006.12.001.

[36]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.

show all references

References:
[1]

J. T. Beale, T. Kato and A. Majda., Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Commun. Math. Phys, 94 (1984), 61. doi: 10.1007/BF01212349.

[2]

R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD,, Comm. Math. Phys., 184 (1997), 443. doi: 10.1007/s002200050067.

[3]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations,, Comm. Math. Phys., 275 (2007), 861. doi: 10.1007/s00220-007-0319-y.

[4]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Comm. Math. Phys., 266 (2006), 595. doi: 10.1007/s00220-006-0052-y.

[5]

Y. Du, Y. Liu and Z. Yao, Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations,, J. Math. Phys., 50 (2009).

[6]

G. Duvaut and J. L. Lions, Inequation en theremoélasticité et magnétohydrodynamique,, Arch. Rational Mech. Anal., 46 (1972), 241.

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005.

[8]

J. Fan and S. Jiang, Blow-up criteria for the Navier-Stokes equations of compressible fluids,, J. Hyper. Diff. Eqns., 5 (2008), 167. doi: 10.1142/S0219891608001386.

[9]

J. Fan, S. Jiang and Y. Ou, A blow-up criterion for three-dimensional compressible viscous heat-conductive flows,, Annales de l'Institut Henri Poincaré Analysis Non Linéaire, 27 (2010), 337. doi: 10.1016/j.anihpc.2009.09.012.

[10]

C. Foias and R. Temam, Gevrey class regulairity for the solutions of the Navier-Stokes equations,, J. Funct. Anal., 87 (1989), 359. doi: 10.1016/0022-1236(89)90015-3.

[11]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differ. Equations, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002.

[12]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,, J. Funct. Anal., 227 (2005), 113. doi: 10.1016/j.jfa.2005.06.009.

[13]

C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetodynamic equations,, J. Differ. Equations, 238 (2007), 1. doi: 10.1016/j.jde.2007.03.023.

[14]

D. Hoff, Compressible flow in a half-space with Navier boundary conditions,, J. Math. Fluid Mech., 7 (2005), 315. doi: 10.1007/s00021-004-0123-9.

[15]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows,, Comm. Math. Phys., 283 (2008), 255. doi: 10.1007/s00220-008-0497-2.

[16]

X. Hu and D. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations,, J. Differential Equations, 245 (2008), 2176. doi: 10.1016/j.jde.2008.07.019.

[17]

X. Hu and D. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows,, SIAM J. Math. Anal., 41 (2009), 1272. doi: 10.1137/080723983.

[18]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Ration. Mech. Anal., 197 (2010), 203. doi: 10.1007/s00205-010-0295-9.

[19]

X. Huang and Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations,, Sci. China Math., 53 (2010), 671. doi: 10.1007/s11425-010-0042-6.

[20]

X. Huang, J. Li and Z. Xin, Serrin type criterion for the three-dimensional viscous compressible flows,, SIAM J. Math. Anal., 43 (2011), 1872. doi: 10.1137/100814639.

[21]

M. Lu, Y. Du and Z. Yao, Blow-up criterion for compressible MHD equations,, J. Math. Anal. Appl., 379 (2011), 425. doi: 10.1016/j.jmaa.2011.01.043.

[22]

M. Lu, Y. Du, Z. Yao and Z. Zhang, A blow-up criterion for the 3D compressible MHD equations,, Comm. Pure Appl. Math., 11 (2012), 1167.

[23]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, J. Diff. Eqns., 245 (2008), 1762. doi: 10.1016/j.jde.2008.07.007.

[24]

O. Rozanova, Blow-up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy,, in, 67 (2009).

[25]

M. Sermange and R. Teman, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635. doi: 10.1002/cpa.3160360506.

[26]

Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3D compressible Navier-Stokes equations,, J. Math. Pures Appl., 95 (2011), 36. doi: 10.1016/j.matpur.2010.08.001.

[27]

Z. Tan and Y. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force,, Nonlinear Anal., 71 (2009), 5866. doi: 10.1016/j.na.2009.05.012.

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", Second edition, (1995).

[29]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068.

[30]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear equations,, Mat. Sbornik (N.S.), 87(129) (1972), 504.

[31]

J. Wu, Bounds and new approaches for the 3D MHD equations,, J. Nonlinear Sci., 12 (2002), 395. doi: 10.1007/s00332-002-0486-0.

[32]

Z. Xin, Blow-up of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[33]

Z. Zhang, Remarks on the regularity criteria for generalized MHD equations,, J. Math. Anal. Appl., 375 (2011), 799. doi: 10.1016/j.jmaa.2010.10.017.

[34]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881. doi: 10.3934/dcds.2005.12.881.

[35]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, Internat. J. Non-Linear Mech., 41 (2006), 1174. doi: 10.1016/j.ijnonlinmec.2006.12.001.

[36]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.

[1]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[2]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[3]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[4]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[5]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[6]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[7]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[8]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[9]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[10]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[11]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[12]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[13]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[14]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[15]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[16]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[17]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[18]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[19]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[20]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]