2012, 32(5): 1857-1879. doi: 10.3934/dcds.2012.32.1857

Prescribing the scalar curvature problem on higher-dimensional manifolds

1. 

Department of Mathematics, Faculty of Sciences of Sfax, Route of Soukra, Sfax, Tunisia

2. 

Department of mathematics, King Abdulaziz university, P.O. 80230, Jeddah, Saudi Arabia

Received  November 2010 Revised  July 2011 Published  January 2012

In this paper we consider the problem of existence of conformal metrics with prescribed scalar curvature on n-dimensional Riemannian manifolds, $n \geq 5 $. Using precise estimates on the losses of compactness, we characterize the critical points at infinity of the associated variational problem and we prove existence results for curvatures satisfying an assumption of Bahri-Coron type.
Citation: Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857
References:
[1]

T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,, J. Math. Pures Appl. (9), 55 (1976), 269.

[2]

T. Aubin and A. Bahri, Méthodes de topologie algebrique pour le problème de la courbure scalaire prescrite,, J. Math. Pures Appl. (9), 76 (1997), 525. doi: 10.1016/S0021-7824(97)89961-8.

[3]

T. Aubin and A. Bahri, Une hypothése topologique pour le problème de la courbure scalaire prescrite, (French) [A topological hypothesis for the problem of prescribed scalar curvature],, J. Math. Pures Appl. (9), 76 (1997), 843. doi: 10.1016/S0021-7824(97)89973-4.

[4]

A. Ambrosetti, J. Garcia Azorero and I. Peral, Perturbation of $-\Delta u + u^{\frac{(N+2)}{(N-2)}} = 0$, the scalar curvature problem in $\mathbbR^N$, and related topics,, Journal of Functional Analysis, 165 (1999), 117. doi: 10.1006/jfan.1999.3390.

[5]

A. Bahri, "Critical Point at Infinity in Some Variational Problems,", Pitman Res. Notes Math, 182 (1989).

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimensions,, A celebration of J. F. Nash, 81 (1996), 323. doi: 10.1215/S0012-7094-96-08116-8.

[7]

A. Bahri and H. Brezis, Équations elliptiques non linéaires sur des variétés avec exposant de Sobolev critique,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 537.

[8]

A. Bahri and J.-M. Coron, The scalar curvature problem on the standard three-dimensional spheres,, J. Funct. Anal., 95 (1991), 106. doi: 10.1016/0022-1236(91)90026-2.

[9]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 255.

[10]

M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds,, Duke Math. J., 84 (1996), 633. doi: 10.1215/S0012-7094-96-08420-3.

[11]

R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $\mathbbS^3$,, Annales de l'Institut Fourier, (2010).

[12]

S.-Y. Chang and P. Yang, A perturbation result in prescribing scalar curvature on $S^n$,, Duke Math. J., 64 (1991), 27. doi: 10.1215/S0012-7094-91-06402-1.

[13]

S.-Y. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.

[14]

C.-C. Chen and C.-S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes,, Comm. Pure Appl. Math., 50 (1997), 971. doi: 10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO;2-D.

[15]

C.-C. Chen and C.-S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.

[16]

C.-C. Chen and C.-S. Lin, Prescribing scalar curvature on $S^n$. I: A priori estimates,, J. Differential Geometry, 57 (2001), 67.

[17]

H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds,, Advanced Nonlinear Studies, 3 (2003), 457.

[18]

A. Hatcher, "Algebraic Topology,", Campbridge University Press, (2002).

[19]

J. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures,, Annals of Math. (2), 101 (1975), 317. doi: 10.2307/1970993.

[20]

J. Lee and T. Parker, The Yamabe problem,, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37.

[21]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, Journal of Differential Equations, 120 (1995), 319. doi: 10.1006/jdeq.1995.1115.

[22]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. II: Existence and compactness,, Comm. Pure Appl. Math., 49 (1996), 541. doi: 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A.

[23]

R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere,, Calculus of Variations and Partial Differential Equations, 4 (1996), 1. doi: 10.1007/BF01322307.

[24]

R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,, J. Differential Geom., 20 (1984), 479.

[25]

R. Schoen, Courses at Stanford University (1988) and New York University (1989),, unpublished., ().

[26]

M. Struwe, "Variational Methods. Applications to Nonlinear PDE and Hamilton Systems,", Springer-Verlag, (1990).

[27]

N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 265.

show all references

References:
[1]

T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,, J. Math. Pures Appl. (9), 55 (1976), 269.

[2]

T. Aubin and A. Bahri, Méthodes de topologie algebrique pour le problème de la courbure scalaire prescrite,, J. Math. Pures Appl. (9), 76 (1997), 525. doi: 10.1016/S0021-7824(97)89961-8.

[3]

T. Aubin and A. Bahri, Une hypothése topologique pour le problème de la courbure scalaire prescrite, (French) [A topological hypothesis for the problem of prescribed scalar curvature],, J. Math. Pures Appl. (9), 76 (1997), 843. doi: 10.1016/S0021-7824(97)89973-4.

[4]

A. Ambrosetti, J. Garcia Azorero and I. Peral, Perturbation of $-\Delta u + u^{\frac{(N+2)}{(N-2)}} = 0$, the scalar curvature problem in $\mathbbR^N$, and related topics,, Journal of Functional Analysis, 165 (1999), 117. doi: 10.1006/jfan.1999.3390.

[5]

A. Bahri, "Critical Point at Infinity in Some Variational Problems,", Pitman Res. Notes Math, 182 (1989).

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimensions,, A celebration of J. F. Nash, 81 (1996), 323. doi: 10.1215/S0012-7094-96-08116-8.

[7]

A. Bahri and H. Brezis, Équations elliptiques non linéaires sur des variétés avec exposant de Sobolev critique,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 537.

[8]

A. Bahri and J.-M. Coron, The scalar curvature problem on the standard three-dimensional spheres,, J. Funct. Anal., 95 (1991), 106. doi: 10.1016/0022-1236(91)90026-2.

[9]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 255.

[10]

M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds,, Duke Math. J., 84 (1996), 633. doi: 10.1215/S0012-7094-96-08420-3.

[11]

R. Ben Mahmoud and H. Chtioui, Existence results for the prescribed scalar curvature on $\mathbbS^3$,, Annales de l'Institut Fourier, (2010).

[12]

S.-Y. Chang and P. Yang, A perturbation result in prescribing scalar curvature on $S^n$,, Duke Math. J., 64 (1991), 27. doi: 10.1215/S0012-7094-91-06402-1.

[13]

S.-Y. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on 2- and 3-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.

[14]

C.-C. Chen and C.-S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes,, Comm. Pure Appl. Math., 50 (1997), 971. doi: 10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO;2-D.

[15]

C.-C. Chen and C.-S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes. II,, J. Differential Geom., 49 (1998), 115.

[16]

C.-C. Chen and C.-S. Lin, Prescribing scalar curvature on $S^n$. I: A priori estimates,, J. Differential Geometry, 57 (2001), 67.

[17]

H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds,, Advanced Nonlinear Studies, 3 (2003), 457.

[18]

A. Hatcher, "Algebraic Topology,", Campbridge University Press, (2002).

[19]

J. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures,, Annals of Math. (2), 101 (1975), 317. doi: 10.2307/1970993.

[20]

J. Lee and T. Parker, The Yamabe problem,, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37.

[21]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, Journal of Differential Equations, 120 (1995), 319. doi: 10.1006/jdeq.1995.1115.

[22]

Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems. II: Existence and compactness,, Comm. Pure Appl. Math., 49 (1996), 541. doi: 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A.

[23]

R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere,, Calculus of Variations and Partial Differential Equations, 4 (1996), 1. doi: 10.1007/BF01322307.

[24]

R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,, J. Differential Geom., 20 (1984), 479.

[25]

R. Schoen, Courses at Stanford University (1988) and New York University (1989),, unpublished., ().

[26]

M. Struwe, "Variational Methods. Applications to Nonlinear PDE and Hamilton Systems,", Springer-Verlag, (1990).

[27]

N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 265.

[1]

M. Ben Ayed, Mohameden Ould Ahmedou. On the prescribed scalar curvature on $3$-half spheres: Multiplicity results and Morse inequalities at infinity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 655-683. doi: 10.3934/dcds.2009.23.655

[2]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[3]

Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687

[4]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[5]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[6]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[7]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[8]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[9]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[10]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[11]

Anthony W. Baker, Michael Dellnitz, Oliver Junge. Topological method for rigorously computing periodic orbits using Fourier modes. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 901-920. doi: 10.3934/dcds.2005.13.901

[12]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[13]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[14]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[15]

Kai Wang, Lingling Xu, Deren Han. A new parallel splitting descent method for structured variational inequalities. Journal of Industrial & Management Optimization, 2014, 10 (2) : 461-476. doi: 10.3934/jimo.2014.10.461

[16]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[17]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[18]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[19]

Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219

[20]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]