# American Institute of Mathematical Sciences

May  2012, 32(5): 1901-1914. doi: 10.3934/dcds.2012.32.1901

## Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion

 1 Department of Applied Mathematics, Dong Hua University, Shanghai 200051, China 2 Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  November 2010 Revised  October 2011 Published  January 2012

This paper deals with a boundary-value problem in two-dimensional smoothly bounded domains for the coupled chemotaxis-fluid model $$\left\{ \begin{array}{l} n_t+ u\cdot \nabla n=\Delta n^m - \nabla \cdot (n\chi(c)\nabla c)\\ c_t+ u\cdot \nabla c=\Delta c-nf(c)\\ u_t +\nabla P-\eta \Delta u+n \nabla \phi=0 \\ \nabla \cdot u=0, \end{array} \right.$$ which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid. The given functions $\chi$ and $f$ are supposed to be sufficiently smooth and such that $f(0)=0$.
It is proved that global bounded weak solutions exist whenever $m>1$ and the initial data $(n_0,c_0,u_0)$ are sufficiently regular satisfying $n_0 \ge 0$ and $c_0\ge 0$. This extends a recent result by Di Francesco, Lorz and Markowich (Discrete Cont. Dyn. Syst. A 28 (2010)) which asserts global existence of weak solutions under the constraint $m \in (\frac{3}{2},2]$.
Citation: Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901
##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar [2] V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up,, J. Math. Pures Appl. (9), 86 (2006), 155.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar [3] M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior,, Discrete Cont. Dyn. Syst., 28 (2010), 1437.   Google Scholar [4] R. J. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Partial Differential Equations, 35 (2010), 1635.  doi: 10.1080/03605302.2010.497199.  Google Scholar [5] A. Friedman, "Partial Differential Equations,", Holt, (1969).   Google Scholar [6] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Diff. Eqns., 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar [7] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar [8] R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar [9] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379.  doi: 10.1016/j.jmaa.2008.01.005.  Google Scholar [10] O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second edition, (1969).   Google Scholar [11] O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,", Translated from the Russian by Scripta Technica, (1968).   Google Scholar [12] J.-L. Lions, "Équations Différentielles Opérationnelles et Problémes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar [13] A. Lorz, Coupled chemotaxis fluid model,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987.  doi: 10.1142/S0218202510004507.  Google Scholar [14] L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 733.   Google Scholar [15] G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar [16] T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,, Abstr. Appl. Analysis, 2006 (2306).   Google Scholar [17] J. Simon, Compact sets in the space $L^p(0, T; B)$,, Ann. Math. Pura Appl. (4), 146 (1987), 65.   Google Scholar [18] H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).   Google Scholar [19] Y. Sugiyama, On $\epsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems,, SIAM J. Math. Anal., 41 (2009), 1664.  doi: 10.1137/080721078.  Google Scholar [20] Z. Szymańska, C. Morales Rodrigo, M. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions,, Math. Mod. Meth. Appl. Sci., 19 (2009), 257.   Google Scholar [21] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685.  doi: 10.1137/100802943.  Google Scholar [22] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar [23] I. Tuval, L. Cisnerous, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277.  doi: 10.1073/pnas.0406724102.  Google Scholar [24] J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).   Google Scholar [25] M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Mathematical Methods in the Applied Sciences, 33 (2010), 12.   Google Scholar [26] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

show all references

##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 10.1080/03605307908820113.  Google Scholar [2] V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up,, J. Math. Pures Appl. (9), 86 (2006), 155.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar [3] M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior,, Discrete Cont. Dyn. Syst., 28 (2010), 1437.   Google Scholar [4] R. J. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Partial Differential Equations, 35 (2010), 1635.  doi: 10.1080/03605302.2010.497199.  Google Scholar [5] A. Friedman, "Partial Differential Equations,", Holt, (1969).   Google Scholar [6] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Diff. Eqns., 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar [7] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar [8] R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566.  doi: 10.1016/j.jmaa.2004.12.009.  Google Scholar [9] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379.  doi: 10.1016/j.jmaa.2008.01.005.  Google Scholar [10] O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second edition, (1969).   Google Scholar [11] O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations,", Translated from the Russian by Scripta Technica, (1968).   Google Scholar [12] J.-L. Lions, "Équations Différentielles Opérationnelles et Problémes aux Limites,", Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar [13] A. Lorz, Coupled chemotaxis fluid model,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987.  doi: 10.1142/S0218202510004507.  Google Scholar [14] L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 733.   Google Scholar [15] G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar [16] T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,, Abstr. Appl. Analysis, 2006 (2306).   Google Scholar [17] J. Simon, Compact sets in the space $L^p(0, T; B)$,, Ann. Math. Pura Appl. (4), 146 (1987), 65.   Google Scholar [18] H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).   Google Scholar [19] Y. Sugiyama, On $\epsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems,, SIAM J. Math. Anal., 41 (2009), 1664.  doi: 10.1137/080721078.  Google Scholar [20] Z. Szymańska, C. Morales Rodrigo, M. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions,, Math. Mod. Meth. Appl. Sci., 19 (2009), 257.   Google Scholar [21] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685.  doi: 10.1137/100802943.  Google Scholar [22] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar [23] I. Tuval, L. Cisnerous, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277.  doi: 10.1073/pnas.0406724102.  Google Scholar [24] J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).   Google Scholar [25] M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Mathematical Methods in the Applied Sciences, 33 (2010), 12.   Google Scholar [26] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar
 [1] María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001 [2] Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 [3] Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258 [4] Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 [5] Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 [6] Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 [7] Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 [8] Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035 [9] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [10] Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725 [11] Kristian Moring, Christoph Scheven, Sebastian Schwarzacher, Thomas Singer. Global higher integrability of weak solutions of porous medium systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1697-1745. doi: 10.3934/cpaa.2020069 [12] Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97 [13] Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737 [14] Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 [15] Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168 [16] Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 [17] Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 [18] Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 [19] Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525 [20] Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

2018 Impact Factor: 1.143