June  2012, 32(6): 2089-2099. doi: 10.3934/dcds.2012.32.2089

A direct proof of the Tonelli's partial regularity result

1. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco,28049 Madrid

Received  April 2011 Revised  July 2011 Published  February 2012

The aim of this work is to give a simple proof of the Tonelli's partial regularity result which states that any absolutely continuous solution to the variational problem $$\min\left\{\int_a^b L(t,u(t),\dot u(t))dt: u\in{\bf W}_0^{1,1}(a,b)\right\}$$ has extended-values continuous derivative if the Lagrangian function $L(t,u,\xi)$ is strictly convex in $\xi$ and Lipschitz continuous in $u$, locally uniformly in $\xi$ (but not in $t$). Our assumption is weaker than the one used in [2, 4, 5, 6, 13] since we do not require the Lipschitz continuity of $L$ in $u$ to be locally uniform in $t$, and it is optimal as shown by the example in [12].
Citation: Alessandro Ferriero. A direct proof of the Tonelli's partial regularity result. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2089-2099. doi: 10.3934/dcds.2012.32.2089
References:
[1]

J. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation,, Arch. Rat. Mech. Anal., 90 (1985), 325. doi: 10.1007/BF00276295.

[2]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-Dimensional Variational Problems. An Introduction,", Oxford Lecture Series in Mathematics and its Applications, 15 (1998).

[3]

A. Cellina, A. Ferriero and E. M. Marchini, Reparameterizations and approximate values of integrals of the calculus of variations,, J. Diff. Equations, 193 (2003), 374. doi: 10.1016/S0022-0396(02)00176-6.

[4]

F. H. Clarke and R. B. Vinter, Existence and regularity in the small in the calculus of variations,, J. Diff. Equations, 59 (1985), 336. doi: 10.1016/0022-0396(85)90145-7.

[5]

F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations,, Trans. Am. Math. Soc., 289 (1985), 73. doi: 10.1090/S0002-9947-1985-0779053-3.

[6]

M. Csörnyei, B. Kirchheim, T. O'Neil, D. Preiss and S. Winter, Universal singular sets in the calculus of variations,, Arch. Rat. Mech. Anal., 190 (2008), 371. doi: 10.1007/s00205-008-0142-4.

[7]

A. M. Davie, Singular minimizers in the calculus of variations in one dimension,, Arch. Rat. Mech. Anal., 101 (1988), 161. doi: 10.1007/BF00251459.

[8]

A. Ferriero, The approximation of higher-order integrals of the calculus of variations and the Lavrentiev phenomenon,, SIAM J. Control Optim., 44 (2005), 99. doi: 10.1137/S0363012903437721.

[9]

A. Ferriero, Relaxation and regularity in the calculus of variations,, J. Differential Equations, 249 (2010), 2548. doi: 10.1016/j.jde.2010.06.013.

[10]

A. Ferriero, On the Tonelli's partial regularity,, preprint, (2008).

[11]

A. Ferriero and E. M. Marchini, On the validity of the Euler-Lagrange equation,, J. Math. Anal. Appl., 304 (2005), 356. doi: 10.1016/j.jmaa.2004.09.029.

[12]

R. Gratwick and D. Preiss, A one-dimensional variational problem with continuous Lagrangian and singular minimizer,, preprint, (2010).

[13]

L. Tonelli, Sur un méthode directe du calcul des variations,, Rend. Circ. Mat. Palermo., 39 (1915).

show all references

References:
[1]

J. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation,, Arch. Rat. Mech. Anal., 90 (1985), 325. doi: 10.1007/BF00276295.

[2]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-Dimensional Variational Problems. An Introduction,", Oxford Lecture Series in Mathematics and its Applications, 15 (1998).

[3]

A. Cellina, A. Ferriero and E. M. Marchini, Reparameterizations and approximate values of integrals of the calculus of variations,, J. Diff. Equations, 193 (2003), 374. doi: 10.1016/S0022-0396(02)00176-6.

[4]

F. H. Clarke and R. B. Vinter, Existence and regularity in the small in the calculus of variations,, J. Diff. Equations, 59 (1985), 336. doi: 10.1016/0022-0396(85)90145-7.

[5]

F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations,, Trans. Am. Math. Soc., 289 (1985), 73. doi: 10.1090/S0002-9947-1985-0779053-3.

[6]

M. Csörnyei, B. Kirchheim, T. O'Neil, D. Preiss and S. Winter, Universal singular sets in the calculus of variations,, Arch. Rat. Mech. Anal., 190 (2008), 371. doi: 10.1007/s00205-008-0142-4.

[7]

A. M. Davie, Singular minimizers in the calculus of variations in one dimension,, Arch. Rat. Mech. Anal., 101 (1988), 161. doi: 10.1007/BF00251459.

[8]

A. Ferriero, The approximation of higher-order integrals of the calculus of variations and the Lavrentiev phenomenon,, SIAM J. Control Optim., 44 (2005), 99. doi: 10.1137/S0363012903437721.

[9]

A. Ferriero, Relaxation and regularity in the calculus of variations,, J. Differential Equations, 249 (2010), 2548. doi: 10.1016/j.jde.2010.06.013.

[10]

A. Ferriero, On the Tonelli's partial regularity,, preprint, (2008).

[11]

A. Ferriero and E. M. Marchini, On the validity of the Euler-Lagrange equation,, J. Math. Anal. Appl., 304 (2005), 356. doi: 10.1016/j.jmaa.2004.09.029.

[12]

R. Gratwick and D. Preiss, A one-dimensional variational problem with continuous Lagrangian and singular minimizer,, preprint, (2010).

[13]

L. Tonelli, Sur un méthode directe du calcul des variations,, Rend. Circ. Mat. Palermo., 39 (1915).

[1]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[2]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[3]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[4]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[5]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

[6]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[7]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[8]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[9]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[10]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[11]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[12]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[13]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[14]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[15]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[16]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[17]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[18]

Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501

[19]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[20]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]