\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Collasping behaviour of a singular diffusion equation

Abstract / Introduction Related Papers Cited by
  • Let $0\le u_0(x)\in L^1(\mathbb{R}^2)\cap L^{\infty}(\mathbb{R}^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|\ge r_1$ and is monotone decreasing for all $|x|\ge r_1$ for some constant $r_1>0$ and $\mbox{ess}\inf_{2{B}_{r_1}(0)}u_0\ge\mbox{ess} \sup_{R^2\setminus B_{r_2}(0)}u_0$ for some constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum [4], [6], and prove the collapsing behaviour of the maximal solution of the equation $u_t=\Delta\log u$ in $\mathbb{R}^2\times (0,T)$, $u(x,0)=u_0(x)$ in $\mathbb{R}^2$, near its extinction time $T=\int_{R^2}u_0dx/4\pi$ by a simplified method without using the Hamilton-Yau Harnack inequality.
    Mathematics Subject Classification: Primary: 35B40; Secondary: 35K57, 35K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Transactions A. M. S., 280 (1983), 351-366.

    [2]

    P. Daskalopoulos and R. Hamilton, Geometric estimates for the logarithmic fast diffusion equation, Comm. Anal. Geom., 12 (2004), 143-164.

    [3]

    P. Daskalopoulos and M. A. del Pino, On a singular diffusion equation, Comm. Anal. Geom., 3 (1995), 523-542.

    [4]

    P. Daskalopoulos and M. A. del Pino, Type II collapsing of maximal solutions to the Ricci flow in $\mathbbR^2$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 851-874.

    [5]

    P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $\mathbbR^2$, Int. Math. Res. Not., 2006, Art. ID 83610, 20 pp.

    [6]

    P. Daskalopoulos and N. Sesum, Type II extinction profile of maximal solutions to the Ricci flow equation, J. Geom. Anal., 20 (2010), 565-591.doi: 10.1007/s12220-010-9128-1.

    [7]

    J. R. Esteban, A. Rodríguez and J. L. Vazquez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane, Advances in Differential Equations, 1 (1996), 21-50.

    [8]

    J. R. Esteban, A. Rodriguez and J. L. Vazquez, The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Advances in Differential Equations, 2 (1997), 867-894.

    [9]

    P. G. de Gennes, Wetting: Statics and dynamics, Rev. Modern Phys., 57 (1985), 827-863.doi: 10.1103/RevModPhys.57.827.

    [10]

    R. Hamilton and S. T. Yau, The Harnack estimate for the Ricci flow on a surface-revisited, Asian J. Math., 1 (1997), 418-421.

    [11]

    S. Y. Hsu, Large time behaviour of solutions of the Ricci flow equation on $R^2$, Pacific J. Math., 197 (2001), 25-41.doi: 10.2140/pjm.2001.197.25.

    [12]

    S. Y. Hsu, Asymptotic profile of a singular diffusion equation as $t\to\infty$, Nonlinear Analysis, 48 (2002), 781-790.doi: 10.1016/S0362-546X(00)00214-5.

    [13]

    S. Y. Hsu, Asymptotic behaviour of solutions of the equation $u_t=\Delta\log u$ near the extinction time, Advances in Differential Equations, 8 (2003), 161-187.

    [14]

    S. Y. Hsu, Behaviour of solutions of a singular diffusion equation near the extinction time, Nonlinear Analysis, 56 (2004), 63-104.doi: 10.1016/j.na.2003.07.018.

    [15]

    K. M. Hui, Existence of solutions of the equation $u_t=\Delta\log u$, Nonlinear Analysis, 37 (1999), 875-914.doi: 10.1016/S0362-546X(98)00081-9.

    [16]

    K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta (u^m/m)$ as $m\to 0$, Pacific J. Math., 187 (1999), 297-316.doi: 10.2140/pjm.1999.187.297.

    [17]

    J. R. King, Self-similar behaviour for the equation of fast nonlinear diffusion, Phil. Trans. Royal Soc. London Series A, 343 (1993), 337-375.doi: 10.1098/rsta.1993.0052.

    [18]

    O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, "Linear and Quasilinear Equations of Parabolic Type," Transl. Math. Mono., Vol. 23, Amer. Math. Soc., Providence, R.I., 1968.

    [19]

    J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl. (9), 71 (1992), 503-526.

    [20]

    L. F. Wu, A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90-94.

    [21]

    L. F. Wu, The Ricci flow on complete $R^2$, Comm. Anal. Geom., 1 (1993), 439-472.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return