June  2012, 32(6): 2207-2221. doi: 10.3934/dcds.2012.32.2207

On dynamical behavior of viscous Cahn-Hilliard equation

1. 

Department of Mathematics, School of Science, Tianjin University, Tianjin, 300072, China, China

Received  February 2011 Revised  October 2011 Published  February 2012

In this paper, we consider the initial and Dirichlet boundary value problem of the viscous Cahn-Hilliard equation with a general nonlinearity $f$, that is $$ d((1-\alpha)u-\alpha\Delta u)+(\Delta^2u-\Delta f(u))dt= 0, $$where $\alpha\in[0,1]$. Firstly, we establish the existence and continuity results on weak solutions and attractors to this problem. Secondly, we show the $\alpha$-uniform attractiveness of the attractors $A_\alpha$.
Citation: Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207
References:
[1]

N. D. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension,, J. Differential Equations, 90 (1991), 81. doi: 10.1016/0022-0396(91)90163-4. Google Scholar

[2]

P. Bates and P. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time-scales for coarsening,, Phys. D, 43 (1990), 335. doi: 10.1016/0167-2789(90)90141-B. Google Scholar

[3]

F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations,, Nonliearity, 8 (1995), 131. doi: 10.1088/0951-7715/8/2/002. Google Scholar

[4]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation,, J. Math. Anal. Appl., 344 (2008), 703. doi: 10.1016/j.jmaa.2008.03.020. Google Scholar

[5]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491. doi: 10.1016/0362-546X(94)00205-V. Google Scholar

[6]

T. Dlotko, On the Cahn-Hilliard equation with a logarithmic free energy $H^2$ and $H^3$,, J. Differential Equations, 113 (1994), 381. doi: 10.1006/jdeq.1994.1129. Google Scholar

[7]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differeential Equations, 128 (1996), 387. doi: 10.1006/jdeq.1996.0101. Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11. doi: 10.1002/mana.200310186. Google Scholar

[9]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[10]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications,, Ann. Mat. Pura Appl. (4), 154 (1989), 281. doi: 10.1007/BF01790353. Google Scholar

[11]

J. K. Hale, X.-B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations,, Math. Comp., 50 (1988), 89. doi: 10.1090/S0025-5718-1988-0917820-X. Google Scholar

[12]

J. K. Hale, Dynamics of numerical approximations,, Appl. Math. Comput., 89 (1998), 5. doi: 10.1016/S0096-3003(97)81644-X. Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[14]

D. S. Li and P. E. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters,, Glasg. Math. J., 46 (2004), 131. doi: 10.1017/S0017089503001605. Google Scholar

[15]

D. S. Li and C. K. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity,, J. Differential Equations, 149 (1998), 191. doi: 10.1006/jdeq.1998.3429. Google Scholar

[16]

D. S. Li and X. X. Zhang, Strongly positively-invariant attractor for periodic processes,, J. Math. Anal. Appl., 241 (2000), 10. doi: 10.1006/jmaa.1999.6499. Google Scholar

[17]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709. doi: 10.1002/mma.590. Google Scholar

[18]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245. Google Scholar

[19]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 329. Google Scholar

[20]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997). Google Scholar

[21]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977). Google Scholar

show all references

References:
[1]

N. D. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension,, J. Differential Equations, 90 (1991), 81. doi: 10.1016/0022-0396(91)90163-4. Google Scholar

[2]

P. Bates and P. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time-scales for coarsening,, Phys. D, 43 (1990), 335. doi: 10.1016/0167-2789(90)90141-B. Google Scholar

[3]

F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations,, Nonliearity, 8 (1995), 131. doi: 10.1088/0951-7715/8/2/002. Google Scholar

[4]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation,, J. Math. Anal. Appl., 344 (2008), 703. doi: 10.1016/j.jmaa.2008.03.020. Google Scholar

[5]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491. doi: 10.1016/0362-546X(94)00205-V. Google Scholar

[6]

T. Dlotko, On the Cahn-Hilliard equation with a logarithmic free energy $H^2$ and $H^3$,, J. Differential Equations, 113 (1994), 381. doi: 10.1006/jdeq.1994.1129. Google Scholar

[7]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differeential Equations, 128 (1996), 387. doi: 10.1006/jdeq.1996.0101. Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11. doi: 10.1002/mana.200310186. Google Scholar

[9]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988). Google Scholar

[10]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications,, Ann. Mat. Pura Appl. (4), 154 (1989), 281. doi: 10.1007/BF01790353. Google Scholar

[11]

J. K. Hale, X.-B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations,, Math. Comp., 50 (1988), 89. doi: 10.1090/S0025-5718-1988-0917820-X. Google Scholar

[12]

J. K. Hale, Dynamics of numerical approximations,, Appl. Math. Comput., 89 (1998), 5. doi: 10.1016/S0096-3003(97)81644-X. Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[14]

D. S. Li and P. E. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters,, Glasg. Math. J., 46 (2004), 131. doi: 10.1017/S0017089503001605. Google Scholar

[15]

D. S. Li and C. K. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity,, J. Differential Equations, 149 (1998), 191. doi: 10.1006/jdeq.1998.3429. Google Scholar

[16]

D. S. Li and X. X. Zhang, Strongly positively-invariant attractor for periodic processes,, J. Math. Anal. Appl., 241 (2000), 10. doi: 10.1006/jmaa.1999.6499. Google Scholar

[17]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709. doi: 10.1002/mma.590. Google Scholar

[18]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245. Google Scholar

[19]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 329. Google Scholar

[20]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997). Google Scholar

[21]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977). Google Scholar

[1]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. Totally dissipative dynamical processes and their uniform global attractors. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1989-2004. doi: 10.3934/cpaa.2014.13.1989

[2]

Gaocheng Yue, Chengkui Zhong. Global attractors for the Gray-Scott equations in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 337-356. doi: 10.3934/dcdsb.2016.21.337

[3]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[4]

P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423

[5]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[6]

Tomás Caraballo, Antonio M. Márquez-Durán, José Real. Pullback and forward attractors for a 3D LANS$-\alpha$ model with delay. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 559-578. doi: 10.3934/dcds.2006.15.559

[7]

Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous Reaction-Diffusion systems without uniqueness. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 55-66. doi: 10.3934/dcdss.2009.2.55

[8]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[9]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[10]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[11]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[12]

Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787

[13]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[14]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[15]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[16]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[17]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[18]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[19]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[20]

S. E. Kuznetsov. An upper bound for positive solutions of the equation \Delta u=u^\alpha. Electronic Research Announcements, 2004, 10: 103-112.

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]