2012, 32(6): 2253-2270. doi: 10.3934/dcds.2012.32.2253

Symmetrical symplectic capacity with applications

1. 

School of Mathematics and LPMC, Nankai University, Tianjin 300071, China

Received  January 2011 Revised  October 2011 Published  February 2012

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.
Citation: Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253
References:
[1]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three body problem in the case of equal masses,, Annals of Mathematics (2), 152 (2000), 881. doi: 10.2307/2661357.

[2]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics,, Math. Z., 200 (1989), 355. doi: 10.1007/BF01215653.

[3]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. II,, Math. Z., 203 (1990), 553. doi: 10.1007/BF02570756.

[4]

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds,, Invent. Math., 82 (1985), 307. doi: 10.1007/BF01388806.

[5]

D. Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary,, Duke Mathematical Journal, 103 (2000), 335. doi: 10.1215/S0012-7094-00-10327-4.

[6]

M.-R. Herman, Differentiabilité optimale et contre-exemples à la fermeture en topologie $C^\infty$ des orbites recurrentes de flots Hamiltoniens,, Comptes Rendus de l'Académie des Sciences Serie-I. Mathématique, 313 (1991), 49.

[7]

M.-R. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites periodiques sur un ouvert de surfaces d'énergies,, Comptes Rendus de l'Académie des Sciences Serie-I. Mathématique, 312 (1991), 989.

[8]

H. Hofer, On the topolgical properties of symplectic maps,, Proc. Roy. Soc. Edinburgh, 115 (1990), 25. doi: 10.1017/S0308210500024549.

[9]

H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorpgic spheres,, Comm. Pure Appl. Math, 45 (1992), 583. doi: 10.1002/cpa.3160450504.

[10]

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds,, in, (1990), 405.

[11]

H. Hofer and E. Zehnder, "Symelectic Invariants and Hamiltonian Dynamics,", Birkhäuser Advanced Texts: Basler Lehrbücher, (1994).

[12]

M.-Y. Jiang, Hofer-Zehnder symplectic capatcity for two dimensional manifolds,, Proc. Royal Soc. Edinb., 123 (1993), 945. doi: 10.1017/S0308210500029590.

[13]

C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbbR^{2n}$,, Math. Ann., 323 (2002), 201. doi: 10.1007/s002089100257.

[14]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbbR^{2n}$,, Ann. Math. (2), 155 (2002), 317. doi: 10.2307/3062120.

[15]

G. Lu, Finiteness of the Hofer-Zehnder capacity of neighborhoods of syplectic submanifolds,, IMRN, 2006 (7652).

[16]

C. Li and C. Liu, Brake subharmonic solutions of first order Hamiltonian systems,, Science in China (Mathematics), 53 (2010), 2719. doi: 10.1007/s11425-010-4105-5.

[17]

C. Liu, Q. Wang and X. Lin, An index theory for symplectic paths associated with Lagrangian subspaces with applications,, Nonlinearity, 24 (2011), 43. doi: 10.1088/0951-7715/24/1/002.

[18]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits,, preprint., ().

[19]

Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains,, Adv. Math., 203 (2006), 568. doi: 10.1016/j.aim.2005.05.005.

[20]

L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Communications in Contemporary Mathematics, 6 (2004), 913. doi: 10.1142/S0219199704001550.

[21]

D. McDuff and D. Salamon, "Introduction to Symplectic Topology,", Second edition, (1998).

[22]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203.

[23]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems on a prescribed energy surface,, J. Diff. Equ., 33 (1979), 336. doi: 10.1016/0022-0396(79)90069-X.

[24]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems,, Nonlinear Anal., 11 (1987), 599. doi: 10.1016/0362-546X(87)90075-7.

[25]

M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Bras. Mat. (N.S.), 20 (1990), 49.

[26]

A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems,, Math. Ann., 283 (1989), 241. doi: 10.1007/BF01446433.

[27]

C. Viterbo, A proof of the Weinstein conjecture in $\mathbbR^{2n}$,, Ann. Inst. H. Poincaré, 4 (1987), 337.

[28]

C. Viterbo, Capacités symplectiques et applications (d'aprés Ekeland- Hofer, Gromov),, Astérisque No., 177-178 (1989), 177.

[29]

C. Viterbo, Functors and computations in Floer homology with applications,, I and II, 9 (1999), 985. doi: 10.1007/s000390050106.

[30]

A. Weinstein, Periodic orbits for convex Hamiltonian systems,, Ann. Math. (2), 108 (1978), 507. doi: 10.2307/1971185.

[31]

A. Weinstein, On the hypotheses of Rabinowitz's periodic orbit theorems,, J. Diff. Equ., 33 (1979), 353. doi: 10.1016/0022-0396(79)90070-6.

[32]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries,, J. Differential Equations, 245 (2008), 925. doi: 10.1016/j.jde.2008.04.020.

show all references

References:
[1]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three body problem in the case of equal masses,, Annals of Mathematics (2), 152 (2000), 881. doi: 10.2307/2661357.

[2]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics,, Math. Z., 200 (1989), 355. doi: 10.1007/BF01215653.

[3]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. II,, Math. Z., 203 (1990), 553. doi: 10.1007/BF02570756.

[4]

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds,, Invent. Math., 82 (1985), 307. doi: 10.1007/BF01388806.

[5]

D. Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary,, Duke Mathematical Journal, 103 (2000), 335. doi: 10.1215/S0012-7094-00-10327-4.

[6]

M.-R. Herman, Differentiabilité optimale et contre-exemples à la fermeture en topologie $C^\infty$ des orbites recurrentes de flots Hamiltoniens,, Comptes Rendus de l'Académie des Sciences Serie-I. Mathématique, 313 (1991), 49.

[7]

M.-R. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites periodiques sur un ouvert de surfaces d'énergies,, Comptes Rendus de l'Académie des Sciences Serie-I. Mathématique, 312 (1991), 989.

[8]

H. Hofer, On the topolgical properties of symplectic maps,, Proc. Roy. Soc. Edinburgh, 115 (1990), 25. doi: 10.1017/S0308210500024549.

[9]

H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorpgic spheres,, Comm. Pure Appl. Math, 45 (1992), 583. doi: 10.1002/cpa.3160450504.

[10]

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds,, in, (1990), 405.

[11]

H. Hofer and E. Zehnder, "Symelectic Invariants and Hamiltonian Dynamics,", Birkhäuser Advanced Texts: Basler Lehrbücher, (1994).

[12]

M.-Y. Jiang, Hofer-Zehnder symplectic capatcity for two dimensional manifolds,, Proc. Royal Soc. Edinb., 123 (1993), 945. doi: 10.1017/S0308210500029590.

[13]

C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbbR^{2n}$,, Math. Ann., 323 (2002), 201. doi: 10.1007/s002089100257.

[14]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbbR^{2n}$,, Ann. Math. (2), 155 (2002), 317. doi: 10.2307/3062120.

[15]

G. Lu, Finiteness of the Hofer-Zehnder capacity of neighborhoods of syplectic submanifolds,, IMRN, 2006 (7652).

[16]

C. Li and C. Liu, Brake subharmonic solutions of first order Hamiltonian systems,, Science in China (Mathematics), 53 (2010), 2719. doi: 10.1007/s11425-010-4105-5.

[17]

C. Liu, Q. Wang and X. Lin, An index theory for symplectic paths associated with Lagrangian subspaces with applications,, Nonlinearity, 24 (2011), 43. doi: 10.1088/0951-7715/24/1/002.

[18]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits,, preprint., ().

[19]

Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains,, Adv. Math., 203 (2006), 568. doi: 10.1016/j.aim.2005.05.005.

[20]

L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Communications in Contemporary Mathematics, 6 (2004), 913. doi: 10.1142/S0219199704001550.

[21]

D. McDuff and D. Salamon, "Introduction to Symplectic Topology,", Second edition, (1998).

[22]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203.

[23]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems on a prescribed energy surface,, J. Diff. Equ., 33 (1979), 336. doi: 10.1016/0022-0396(79)90069-X.

[24]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems,, Nonlinear Anal., 11 (1987), 599. doi: 10.1016/0362-546X(87)90075-7.

[25]

M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Bras. Mat. (N.S.), 20 (1990), 49.

[26]

A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems,, Math. Ann., 283 (1989), 241. doi: 10.1007/BF01446433.

[27]

C. Viterbo, A proof of the Weinstein conjecture in $\mathbbR^{2n}$,, Ann. Inst. H. Poincaré, 4 (1987), 337.

[28]

C. Viterbo, Capacités symplectiques et applications (d'aprés Ekeland- Hofer, Gromov),, Astérisque No., 177-178 (1989), 177.

[29]

C. Viterbo, Functors and computations in Floer homology with applications,, I and II, 9 (1999), 985. doi: 10.1007/s000390050106.

[30]

A. Weinstein, Periodic orbits for convex Hamiltonian systems,, Ann. Math. (2), 108 (1978), 507. doi: 10.2307/1971185.

[31]

A. Weinstein, On the hypotheses of Rabinowitz's periodic orbit theorems,, J. Diff. Equ., 33 (1979), 353. doi: 10.1016/0022-0396(79)90070-6.

[32]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries,, J. Differential Equations, 245 (2008), 925. doi: 10.1016/j.jde.2008.04.020.

[1]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[2]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[3]

Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251

[4]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[5]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[6]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[7]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[8]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[9]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[10]

Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811

[11]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[12]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[13]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[14]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[15]

Alexandra Monzner, Nicolas Vichery, Frol Zapolsky. Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization. Journal of Modern Dynamics, 2012, 6 (2) : 205-249. doi: 10.3934/jmd.2012.6.205

[16]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[17]

Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34.

[18]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[19]

George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215

[20]

Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]