2012, 32(6): 2271-2283. doi: 10.3934/dcds.2012.32.2271

Nonradial solutions for the Klein-Gordon-Maxwell equations

1. 

Mathematical Institute, University of Giessen, Arndtstr. 2, D–35392 Giessen, Germany

Received  April 2011 Revised  October 2011 Published  February 2012

We study a system of a nonlinear Klein-Gordon equation coupled with Maxwell's equations. We prove the existence of nonradial solutions which are radially symmetric when restricted to a hyperplane, and either periodic or non-periodic in the orthogonal direction to that very hyperplane.
Citation: Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7.

[2]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity,, J. Differential Equations, 249 (2010), 1746. doi: 10.1016/j.jde.2010.07.007.

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355. doi: 10.4171/JEMS/83.

[4]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, Rev. Math. Phys., 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[5]

D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations,, Nonlinear Anal., 58 (2004), 733. doi: 10.1016/j.na.2003.05.001.

[6]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.

[7]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307.

[8]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations,, Adv. Nonlinear Stud., 2 (2002), 177.

[9]

M. J. Esteban and P.-L. Lions, A compactness lemma,, Nonlinear Analysis, 7 (1983), 381.

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[11]

P.-L. Lions, The concentration-compactness method in the calculus of variations. The locally compact case, II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.

[12]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,'', CBMS Regional Conference Series in Mathematics, 65 (1986).

[13]

M. Willem, "Minimax Theorems,'', Progress in Nonlinear Differential Equations and their Applications, 24 (1996).

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7.

[2]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity,, J. Differential Equations, 249 (2010), 1746. doi: 10.1016/j.jde.2010.07.007.

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355. doi: 10.4171/JEMS/83.

[4]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, Rev. Math. Phys., 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[5]

D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations,, Nonlinear Anal., 58 (2004), 733. doi: 10.1016/j.na.2003.05.001.

[6]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.

[7]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, Adv. Nonlinear Stud., 4 (2004), 307.

[8]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations,, Adv. Nonlinear Stud., 2 (2002), 177.

[9]

M. J. Esteban and P.-L. Lions, A compactness lemma,, Nonlinear Analysis, 7 (1983), 381.

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[11]

P.-L. Lions, The concentration-compactness method in the calculus of variations. The locally compact case, II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.

[12]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,'', CBMS Regional Conference Series in Mathematics, 65 (1986).

[13]

M. Willem, "Minimax Theorems,'', Progress in Nonlinear Differential Equations and their Applications, 24 (1996).

[1]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[2]

Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135

[3]

Paulo Cesar Carrião, Patrícia L. Cunha, Olímpio Hiroshi Miyagaki. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Communications on Pure & Applied Analysis, 2011, 10 (2) : 709-718. doi: 10.3934/cpaa.2011.10.709

[4]

Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034

[5]

Baoxiang Wang. Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 753-763. doi: 10.3934/dcds.1999.5.753

[6]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[7]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[8]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[9]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[10]

Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889

[11]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[12]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[13]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[14]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

[15]

Zaihui Gan. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1541-1554. doi: 10.3934/cpaa.2009.8.1541

[16]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[17]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[18]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[19]

Joel Spruck, Yisong Yang. Charged cosmological dust solutions of the coupled Einstein and Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 567-589. doi: 10.3934/dcds.2010.28.567

[20]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]