• Previous Article
    Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold
  • DCDS Home
  • This Issue
  • Next Article
    Dynamics of a delay differential equation with multiple state-dependent delays
August  2012, 32(8): 2729-2757. doi: 10.3934/dcds.2012.32.2729

Type III excitability, slope sensitivity and coincidence detection

1. 

Dynamics and Control, Beihang University, Beijing, China

2. 

Center for Neural Science, New York University, United States

3. 

Center for Neural Science, and Courant Institute of Mathematical Sciences, New York University, United States

Received  May 2011 Revised  July 2011 Published  March 2012

Some neurons in the nervous system do not show repetitive firing for steady currents. For time-varying inputs, they fire once if the input rise is fast enough. This property of phasic firing is known as Type III excitability. Type III excitability has been observed in neurons in the auditory brainstem (MSO), which show strong phase-locking and accurate coincidence detection. In this paper, we consider a Hodgkin-Huxley type model (RM03) that is widely-used for phasic MSO neurons and we compare it with a modification of it, showing tonic behavior. We provide insight into the temporal processing of these neuron models by means of developing and analyzing two reduced models that reproduce qualitatively the properties of the exemplar ones. The geometric and mathematical analysis of the reduced models allows us to detect and quantify relevant features for the temporal computation such as nearness to threshold and a temporal integration window. Our results underscore the importance of Type III excitability for precise coincidence detection.
Citation: Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2729-2757. doi: 10.3934/dcds.2012.32.2729
References:
[1]

L. R. Bernstein, Auditory processing of interaural timing information: New insights,, J. Neurosci. Res., 66 (2001), 1035.  doi: 10.1002/jnr.10103.  Google Scholar

[2]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,, J. Neurophysiol., 94 (2005), 3637.  doi: 10.1152/jn.00686.2005.  Google Scholar

[3]

H. M. Brew and I. D. Forsythe, Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse,, J. Neurosci., 15 (1995), 8011.   Google Scholar

[4]

C. E. Carr and K. M. Macleod, Microseconds matter,, PLoS Biol., 8 (2010).  doi: 10.1371/journal.pbio.1000405.  Google Scholar

[5]

J. R. Clay, D. Paydarfar and D. B. Forger, A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons,, J. R. Soc. Interface, 5 (2008), 1421.  doi: 10.1098/rsif.2008.0166.  Google Scholar

[6]

D. L. Cook, P. C. Schwindt, L. A. Grande and W. J. Spain, Synaptic depression in the localization of sound,, Nature, 421 (2003), 66.  doi: 10.1038/nature01248.  Google Scholar

[7]

M. L. Day, B. Doiron and J. Rinzel, Subthreshold K+ channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model,, J. Neurophysiol., 99 (2008), 534.  doi: 10.1152/jn.00326.2007.  Google Scholar

[8]

R. Dodla, G. Svirskis and J. Rinzel, Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation,, J. Neurophysiol., 95 (2006), 2664.  doi: 10.1152/jn.00752.2005.  Google Scholar

[9]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[10]

R. FitzHugh, Mathematical models of excitation and propagation in nerve,, in, (1969), 1.   Google Scholar

[11]

Y. Gai, B. Doiron, V. Kotak and J. Rinzel, Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current,, J. Neurophysiol., 102 (2009), 3447.  doi: 10.1152/jn.00538.2009.  Google Scholar

[12]

Y. Gai, B. Doiron and J. Rinzel, Slope-based stochastic resonance: How noise enables phasic neurons to encode slow signals,, PLoS Comput. Biol., 6 (2010).   Google Scholar

[13]

J. M. Goldberg and P. B. Brown, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization,, J. Neurophysiol., 32 (1969), 613.   Google Scholar

[14]

R. Guttman, S. Lewis and J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator,, J. Physiol. (Lond.), 305 (1980), 377.   Google Scholar

[15]

A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon,, J. Physiol. (Lond.), 107 (1948), 165.   Google Scholar

[16]

Eugene M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", Computational Neuroscience, (2007).   Google Scholar

[17]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505.  doi: 10.1016/j.jtbi.2004.08.030.  Google Scholar

[18]

Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25.  doi: 10.1023/A:1008916026143.  Google Scholar

[19]

P. B. Manis and S. O. Marx, Outward currents in isolated ventral cochlear nucleus neurons,, J. Neurosci., 11 (1991), 2865.   Google Scholar

[20]

X. Meng, Q. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: Leading spike, latency, bistability,, J. Comput. Neurosci., 31 (2010), 117.  doi: 10.1007/s10827-010-0297-5.  Google Scholar

[21]

X. Y. Meng and J. Rinzel, A two-variable reduction of the Rothman-Manis model for phasic firing,, Abstracts of the Thirty-Fourth Annual Mid-Winter Research Meeting of the Association for Research in Otolaryngology, 34 (2011).   Google Scholar

[22]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010).   Google Scholar

[23]

S. A. Prescott and Y. De Koninck, Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat,, J. Physiol. (Lond.), 539 (2002), 817.  doi: 10.1113/jphysiol.2001.013437.  Google Scholar

[24]

S. A. Prescott, Y. De Koninck and T. J. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation,, PLoS Comput. Biol., 4 (2008).   Google Scholar

[25]

M. Rathouz and L. Trussell, Characterization of outward currents in neurons of the avian nucleus magnocellularis,, J. Neurophysiol., 80 (1998), 2824.   Google Scholar

[26]

A. D. Reyes, E. W. Rubel and W. J. Spain, In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons,, J. Neurosci., 16 (1996), 993.   Google Scholar

[27]

M. J. Richardson, N. Brunel and V. Hakim, From subthreshold to firing-rate resonance,, J. Neurophysiol., 89 (2003), 2538.  doi: 10.1152/jn.00955.2002.  Google Scholar

[28]

J. Rinzel, On repetitive activity in nerve,, Fed. Proc., 37 (1978), 2793.   Google Scholar

[29]

J. Rinzel, Excitation dynamics: Insights from simplified membrane models,, Fed. Proc., 44 (1985), 2944.   Google Scholar

[30]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1998), 251.   Google Scholar

[31]

J. Rinzel, D. Terman, X. Wang and B. Ermentrout, Propagating activity patterns in large-scale inhibitory neuronal networks,, Science, 279 (1998), 1351.  doi: 10.1126/science.279.5355.1351.  Google Scholar

[32]

J. S. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097.  doi: 10.1152/jn.00127.2002.  Google Scholar

[33]

J. W. Schnupp and C. E. Carr, On hearing with more than one ear: Lessons from evolution,, Nat. Neurosci., 12 (2009), 692.  doi: 10.1038/nn.2325.  Google Scholar

[34]

L. L. Scott, P. J. Mathews and N. L. Golding, Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive,, J. Neurosci., 30 (2010), 2039.  doi: 10.1523/JNEUROSCI.2385-09.2010.  Google Scholar

[35]

J. P. Segundo and O. Diez Martinez, Dynamic and static hysteresis in crayfish stretch receptors,, Biol. Cybern., 52 (1985), 291.  doi: 10.1007/BF00355750.  Google Scholar

[36]

S. J. Slee, M. H. Higgs, A. L. Fairhall and W. J. Spain, Two-dimensional time coding in the auditory brainstem,, J. Neurosci., 25 (2005), 9978.  doi: 10.1523/JNEUROSCI.2666-05.2005.  Google Scholar

[37]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons,, J. Neurosci., 22 (2002), 11019.   Google Scholar

[38]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons,, J. Neurophysiol., 91 (2004), 2465.  doi: 10.1152/jn.00717.2003.  Google Scholar

[39]

T. Tateno, A. Harsch and H. P. Robinson, Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics,, J. Neurophysiol., 92 (2004), 2283.  doi: 10.1152/jn.00109.2004.  Google Scholar

[40]

X. J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,, J. Neurosci., 16 (1996), 6402.   Google Scholar

show all references

References:
[1]

L. R. Bernstein, Auditory processing of interaural timing information: New insights,, J. Neurosci. Res., 66 (2001), 1035.  doi: 10.1002/jnr.10103.  Google Scholar

[2]

R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,, J. Neurophysiol., 94 (2005), 3637.  doi: 10.1152/jn.00686.2005.  Google Scholar

[3]

H. M. Brew and I. D. Forsythe, Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse,, J. Neurosci., 15 (1995), 8011.   Google Scholar

[4]

C. E. Carr and K. M. Macleod, Microseconds matter,, PLoS Biol., 8 (2010).  doi: 10.1371/journal.pbio.1000405.  Google Scholar

[5]

J. R. Clay, D. Paydarfar and D. B. Forger, A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons,, J. R. Soc. Interface, 5 (2008), 1421.  doi: 10.1098/rsif.2008.0166.  Google Scholar

[6]

D. L. Cook, P. C. Schwindt, L. A. Grande and W. J. Spain, Synaptic depression in the localization of sound,, Nature, 421 (2003), 66.  doi: 10.1038/nature01248.  Google Scholar

[7]

M. L. Day, B. Doiron and J. Rinzel, Subthreshold K+ channel dynamics interact with stimulus spectrum to influence temporal coding in an auditory brain stem model,, J. Neurophysiol., 99 (2008), 534.  doi: 10.1152/jn.00326.2007.  Google Scholar

[8]

R. Dodla, G. Svirskis and J. Rinzel, Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation,, J. Neurophysiol., 95 (2006), 2664.  doi: 10.1152/jn.00752.2005.  Google Scholar

[9]

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[10]

R. FitzHugh, Mathematical models of excitation and propagation in nerve,, in, (1969), 1.   Google Scholar

[11]

Y. Gai, B. Doiron, V. Kotak and J. Rinzel, Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current,, J. Neurophysiol., 102 (2009), 3447.  doi: 10.1152/jn.00538.2009.  Google Scholar

[12]

Y. Gai, B. Doiron and J. Rinzel, Slope-based stochastic resonance: How noise enables phasic neurons to encode slow signals,, PLoS Comput. Biol., 6 (2010).   Google Scholar

[13]

J. M. Goldberg and P. B. Brown, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization,, J. Neurophysiol., 32 (1969), 613.   Google Scholar

[14]

R. Guttman, S. Lewis and J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator,, J. Physiol. (Lond.), 305 (1980), 377.   Google Scholar

[15]

A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon,, J. Physiol. (Lond.), 107 (1948), 165.   Google Scholar

[16]

Eugene M. Izhikevich, "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,", Computational Neuroscience, (2007).   Google Scholar

[17]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505.  doi: 10.1016/j.jtbi.2004.08.030.  Google Scholar

[18]

Y. H. Liu and X. J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25.  doi: 10.1023/A:1008916026143.  Google Scholar

[19]

P. B. Manis and S. O. Marx, Outward currents in isolated ventral cochlear nucleus neurons,, J. Neurosci., 11 (1991), 2865.   Google Scholar

[20]

X. Meng, Q. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: Leading spike, latency, bistability,, J. Comput. Neurosci., 31 (2010), 117.  doi: 10.1007/s10827-010-0297-5.  Google Scholar

[21]

X. Y. Meng and J. Rinzel, A two-variable reduction of the Rothman-Manis model for phasic firing,, Abstracts of the Thirty-Fourth Annual Mid-Winter Research Meeting of the Association for Research in Otolaryngology, 34 (2011).   Google Scholar

[22]

J. Platkiewicz and R. Brette, A threshold equation for action potential initiation,, PLoS Comput. Biol., 6 (2010).   Google Scholar

[23]

S. A. Prescott and Y. De Koninck, Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat,, J. Physiol. (Lond.), 539 (2002), 817.  doi: 10.1113/jphysiol.2001.013437.  Google Scholar

[24]

S. A. Prescott, Y. De Koninck and T. J. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation,, PLoS Comput. Biol., 4 (2008).   Google Scholar

[25]

M. Rathouz and L. Trussell, Characterization of outward currents in neurons of the avian nucleus magnocellularis,, J. Neurophysiol., 80 (1998), 2824.   Google Scholar

[26]

A. D. Reyes, E. W. Rubel and W. J. Spain, In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons,, J. Neurosci., 16 (1996), 993.   Google Scholar

[27]

M. J. Richardson, N. Brunel and V. Hakim, From subthreshold to firing-rate resonance,, J. Neurophysiol., 89 (2003), 2538.  doi: 10.1152/jn.00955.2002.  Google Scholar

[28]

J. Rinzel, On repetitive activity in nerve,, Fed. Proc., 37 (1978), 2793.   Google Scholar

[29]

J. Rinzel, Excitation dynamics: Insights from simplified membrane models,, Fed. Proc., 44 (1985), 2944.   Google Scholar

[30]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1998), 251.   Google Scholar

[31]

J. Rinzel, D. Terman, X. Wang and B. Ermentrout, Propagating activity patterns in large-scale inhibitory neuronal networks,, Science, 279 (1998), 1351.  doi: 10.1126/science.279.5355.1351.  Google Scholar

[32]

J. S. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons,, J. Neurophysiol., 89 (2003), 3097.  doi: 10.1152/jn.00127.2002.  Google Scholar

[33]

J. W. Schnupp and C. E. Carr, On hearing with more than one ear: Lessons from evolution,, Nat. Neurosci., 12 (2009), 692.  doi: 10.1038/nn.2325.  Google Scholar

[34]

L. L. Scott, P. J. Mathews and N. L. Golding, Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive,, J. Neurosci., 30 (2010), 2039.  doi: 10.1523/JNEUROSCI.2385-09.2010.  Google Scholar

[35]

J. P. Segundo and O. Diez Martinez, Dynamic and static hysteresis in crayfish stretch receptors,, Biol. Cybern., 52 (1985), 291.  doi: 10.1007/BF00355750.  Google Scholar

[36]

S. J. Slee, M. H. Higgs, A. L. Fairhall and W. J. Spain, Two-dimensional time coding in the auditory brainstem,, J. Neurosci., 25 (2005), 9978.  doi: 10.1523/JNEUROSCI.2666-05.2005.  Google Scholar

[37]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons,, J. Neurosci., 22 (2002), 11019.   Google Scholar

[38]

G. Svirskis, V. Kotak, D. H. Sanes and J. Rinzel, Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons,, J. Neurophysiol., 91 (2004), 2465.  doi: 10.1152/jn.00717.2003.  Google Scholar

[39]

T. Tateno, A. Harsch and H. P. Robinson, Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics,, J. Neurophysiol., 92 (2004), 2283.  doi: 10.1152/jn.00109.2004.  Google Scholar

[40]

X. J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,, J. Neurosci., 16 (1996), 6402.   Google Scholar

[1]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[6]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[7]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[8]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[9]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[10]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[11]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[12]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[15]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[16]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[17]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[18]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[19]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[20]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (42)

Other articles
by authors

[Back to Top]