September  2012, 32(9): 3099-3131. doi: 10.3934/dcds.2012.32.3099

Dynamics of a three species competition model

1. 

Department of Mathematics, Mathematical Bioscience Institute, Ohio State University, Columbus, Ohio 43210, United States

2. 

Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada

Received  January 2012 Revised  March 2012 Published  April 2012

We investigate the dynamics of a three species competition model, in which all species have the same population dynamics but distinct dispersal strategies. Gejji et al. [15] introduced a general dispersal strategy for two species, termed as an ideal free pair in this paper, which can result in the ideal free distributions of two competing species at equilibrium. We show that if one of the three species adopts a dispersal strategy which produces the ideal free distribution, then none of the other two species can persist if they do not form an ideal free pair. We also show that if two species form an ideal free pair, then the third species in general can not invade. When none of the three species is adopting a dispersal strategy which can produce the ideal free distribution, we find some class of resource functions such that three species competing for the same resource can be ecologically permanent by using distinct dispersal strategies.
Citation: Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099
References:
[1]

I. Averill, Y. Lou and D. Munther, On several conjectures from evolution of dispersal,, J. Biol. Dyn., (). Google Scholar

[2]

F. Belgacem, "Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications,", Pitman Res. Notes Math. Ser., 368 (1997). Google Scholar

[3]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment,, Canadian Appl. Math. Quarterly, 3 (1995), 379. Google Scholar

[4]

N. P. Bhatia and G. P. Szegö, "Stability Theory of Dynamical Systems,", Springer-Verlag, (1970). Google Scholar

[5]

R. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods,, Proc. Roy. Soc. Edinb. A, 126 (1996), 247. doi: 10.1017/S0308210500022721. Google Scholar

[6]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley Series in Mathematical and Computational Biology, (2003). Google Scholar

[7]

R. S. Cantrell, C. Cosner and Y. Lou, Advection mediated coexistence of competing species,, Proc. Roy. Soc. Edinb. A, 137 (2007), 497. Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and the ideal free distribution,, Math. Bios. Eng., 7 (2010), 17. doi: 10.3934/mbe.2010.7.17. Google Scholar

[9]

, Chris Cosner,, private communication., (). Google Scholar

[10]

X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunction of an elliptic operator with large convection and its application to a competition model,, Indiana Univ. Math. J., 57 (2008), 627. doi: 10.1512/iumj.2008.57.3204. Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model,, J. Math. Biol., 37 (1998), 61. doi: 10.1007/s002850050120. Google Scholar

[13]

S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat selection in birds: Theoretical development,, Acta Biotheor., 19 (1970), 16. doi: 10.1007/BF01601953. Google Scholar

[14]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964). Google Scholar

[15]

R. Gejji, Y. Lou, D. Munther and J. Peyton, Evolutionary convergence to ideal free dispersal strategies and coexistence,, Bull. Math. Biol., 74 (2012), 257. doi: 10.1007/s11538-011-9662-4. Google Scholar

[16]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order,", 2nd edition, 224 (1983). Google Scholar

[17]

J. K. Hale, Dynamical systems and stability,, J. Math. Anal. Appl., 26 (1969), 39. doi: 10.1016/0022-247X(69)90175-9. Google Scholar

[18]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", University Press, (1952). Google Scholar

[19]

A. Hastings, Can spatial variation alone lead to selection for dispersal?,, Theor. Pop. Biol., 24 (1983), 244. doi: 10.1016/0040-5809(83)90027-8. Google Scholar

[20]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Res. Notes Math. Ser., 247 (1991). Google Scholar

[21]

J. Huska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains,, Journal of Differential Equations, 226 (2006), 541. Google Scholar

[22]

K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model,, J. Differential Equations, 250 (2011), 161. Google Scholar

[23]

K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, II,,, SIAM J. Math Anal., (). Google Scholar

[24]

K. Y. Lam and W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics,, Discrete Contin. Dynam. Syst., 28 (2010), 1051. doi: 10.3934/dcds.2010.28.1051. Google Scholar

[25]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, Journal of Differential Equations, 223 (2006), 400. Google Scholar

[26]

W.-M. Ni, "The Mathematics of Diffusion,", CBMS-NSF Regional Conference Series in Applied Mathematics, 82 (2011). Google Scholar

[27]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics,", Vol. 14, (2001). Google Scholar

[28]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", 2nd edition, (1984). Google Scholar

[29]

R. Redlinger, Über die $C^2$-kompaktheit der bahn der lösungen semilinearer parabolischer systeme,, Proc. Roy. Soc. Edinb. A, 93 (1983), 99. doi: 10.1017/S0308210500031693. Google Scholar

[30]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997). Google Scholar

[31]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[32]

P. Turchin, "Qualitative Analysis of Movement,", Sinauer Press, (1998). Google Scholar

[33]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1985). Google Scholar

show all references

References:
[1]

I. Averill, Y. Lou and D. Munther, On several conjectures from evolution of dispersal,, J. Biol. Dyn., (). Google Scholar

[2]

F. Belgacem, "Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications,", Pitman Res. Notes Math. Ser., 368 (1997). Google Scholar

[3]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment,, Canadian Appl. Math. Quarterly, 3 (1995), 379. Google Scholar

[4]

N. P. Bhatia and G. P. Szegö, "Stability Theory of Dynamical Systems,", Springer-Verlag, (1970). Google Scholar

[5]

R. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods,, Proc. Roy. Soc. Edinb. A, 126 (1996), 247. doi: 10.1017/S0308210500022721. Google Scholar

[6]

R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations,", Wiley Series in Mathematical and Computational Biology, (2003). Google Scholar

[7]

R. S. Cantrell, C. Cosner and Y. Lou, Advection mediated coexistence of competing species,, Proc. Roy. Soc. Edinb. A, 137 (2007), 497. Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and the ideal free distribution,, Math. Bios. Eng., 7 (2010), 17. doi: 10.3934/mbe.2010.7.17. Google Scholar

[9]

, Chris Cosner,, private communication., (). Google Scholar

[10]

X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunction of an elliptic operator with large convection and its application to a competition model,, Indiana Univ. Math. J., 57 (2008), 627. doi: 10.1512/iumj.2008.57.3204. Google Scholar

[11]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model,, J. Math. Biol., 37 (1998), 61. doi: 10.1007/s002850050120. Google Scholar

[13]

S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat selection in birds: Theoretical development,, Acta Biotheor., 19 (1970), 16. doi: 10.1007/BF01601953. Google Scholar

[14]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964). Google Scholar

[15]

R. Gejji, Y. Lou, D. Munther and J. Peyton, Evolutionary convergence to ideal free dispersal strategies and coexistence,, Bull. Math. Biol., 74 (2012), 257. doi: 10.1007/s11538-011-9662-4. Google Scholar

[16]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order,", 2nd edition, 224 (1983). Google Scholar

[17]

J. K. Hale, Dynamical systems and stability,, J. Math. Anal. Appl., 26 (1969), 39. doi: 10.1016/0022-247X(69)90175-9. Google Scholar

[18]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", University Press, (1952). Google Scholar

[19]

A. Hastings, Can spatial variation alone lead to selection for dispersal?,, Theor. Pop. Biol., 24 (1983), 244. doi: 10.1016/0040-5809(83)90027-8. Google Scholar

[20]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Res. Notes Math. Ser., 247 (1991). Google Scholar

[21]

J. Huska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains,, Journal of Differential Equations, 226 (2006), 541. Google Scholar

[22]

K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model,, J. Differential Equations, 250 (2011), 161. Google Scholar

[23]

K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, II,,, SIAM J. Math Anal., (). Google Scholar

[24]

K. Y. Lam and W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics,, Discrete Contin. Dynam. Syst., 28 (2010), 1051. doi: 10.3934/dcds.2010.28.1051. Google Scholar

[25]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, Journal of Differential Equations, 223 (2006), 400. Google Scholar

[26]

W.-M. Ni, "The Mathematics of Diffusion,", CBMS-NSF Regional Conference Series in Applied Mathematics, 82 (2011). Google Scholar

[27]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics,", Vol. 14, (2001). Google Scholar

[28]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", 2nd edition, (1984). Google Scholar

[29]

R. Redlinger, Über die $C^2$-kompaktheit der bahn der lösungen semilinearer parabolischer systeme,, Proc. Roy. Soc. Edinb. A, 93 (1983), 99. doi: 10.1017/S0308210500031693. Google Scholar

[30]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997). Google Scholar

[31]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[32]

P. Turchin, "Qualitative Analysis of Movement,", Sinauer Press, (1998). Google Scholar

[33]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed Point Theorems,", Springer-Verlag, (1985). Google Scholar

[1]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[2]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[3]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[4]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[5]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[6]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[7]

Alain Rapaport, Mario Veruete. A new proof of the competitive exclusion principle in the chemostat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3755-3764. doi: 10.3934/dcdsb.2018314

[8]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[9]

Kokum R. De Silva, Tuoc V. Phan, Suzanne Lenhart. Advection control in parabolic PDE systems for competitive populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1049-1072. doi: 10.3934/dcdsb.2017052

[10]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[11]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[12]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[13]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[14]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[15]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[16]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[17]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[18]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[19]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[20]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]