2012, 32(10): 3433-3457. doi: 10.3934/dcds.2012.32.3433

Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials

1. 

Aix-Marseille Université LATP, case cour A, Faculté des Sciences de Saint Jerôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France

Received  January 2011 Revised  March 2012 Published  May 2012

We study relations between Rauzy classes coming from an interval exchange map and the corresponding connected components of strata of the moduli space of Abelian differentials. This gives a criterion to decide whether two permutations are in the same Rauzy class or not, without actually computing them. We prove a similar result for Rauzy classes corresponding to quadratic differentials.
Citation: Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433
References:
[1]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143.

[2]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1.

[3]

C. Boissy, Configurations of saddle connections of quadratic differentials on $\mathbb{CP}^1$ and on hyperelliptic Riemann surfaces,, Comment. Math. Helv., 84 (2009), 757. doi: 10.4171/CMH/180.

[4]

C. Boissy, Degenerations of quadratic differentials on $\mathbb{CP}^1$,, Geometry and Topology, 12 (2008), 1345. doi: 10.2140/gt.2008.12.1345.

[5]

C. Boissy, Labeled Rauzy classes and framed translation surfaces,, to appear in Annales de l'Institut Fourier, (2010).

[6]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767. doi: 10.1017/S0143385708080565.

[7]

C. Danthony and A. Nogueira, Measured foliations on nonorientable surfaces,, Ann. Sci. École Norm. Sup. (4), 23 (1990), 469.

[8]

A. Douady and J. Hubbard, On the density of Strebel differentials,, Inventiones Math., 30 (1975), 175. doi: 10.1007/BF01425507.

[9]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Hautes Études Sci., 97 (2003), 61.

[10]

J. Fickenscher, Self-inverses in Rauzy classes,, preprint, (2011).

[11]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301. doi: 10.1007/BF02760655.

[12]

M. Keane, Interval exchange transformations,, Math. Zeit., 141 (1975), 25. doi: 10.1007/BF01236981.

[13]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[14]

E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities,, Comment. Math. Helv., 79 (2004), 471.

[15]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 1.

[16]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth type interval exchange maps,, Journal of the Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[17]

H. Masur, Interval exchange transformations and measured foliations,, Ann of Math. (2), 115 (1982), 169. doi: 10.2307/1971341.

[18]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov homeomorphisms,, Comment. Math. Helv., 68 (1993), 289. doi: 10.1007/BF02565820.

[19]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, IN, (2002), 1015.

[20]

H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli space of quadratic differentials,, Geom. Funct. Anal., 18 (2008), 919. doi: 10.1007/s00039-008-0678-3.

[21]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[22]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201. doi: 10.2307/1971391.

[23]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[24]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials,, Journal of Modern Dynamics, 2 (2008), 139.

show all references

References:
[1]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143.

[2]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1.

[3]

C. Boissy, Configurations of saddle connections of quadratic differentials on $\mathbb{CP}^1$ and on hyperelliptic Riemann surfaces,, Comment. Math. Helv., 84 (2009), 757. doi: 10.4171/CMH/180.

[4]

C. Boissy, Degenerations of quadratic differentials on $\mathbb{CP}^1$,, Geometry and Topology, 12 (2008), 1345. doi: 10.2140/gt.2008.12.1345.

[5]

C. Boissy, Labeled Rauzy classes and framed translation surfaces,, to appear in Annales de l'Institut Fourier, (2010).

[6]

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials,, Ergodic Theory Dynam. Systems, 29 (2009), 767. doi: 10.1017/S0143385708080565.

[7]

C. Danthony and A. Nogueira, Measured foliations on nonorientable surfaces,, Ann. Sci. École Norm. Sup. (4), 23 (1990), 469.

[8]

A. Douady and J. Hubbard, On the density of Strebel differentials,, Inventiones Math., 30 (1975), 175. doi: 10.1007/BF01425507.

[9]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Hautes Études Sci., 97 (2003), 61.

[10]

J. Fickenscher, Self-inverses in Rauzy classes,, preprint, (2011).

[11]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301. doi: 10.1007/BF02760655.

[12]

M. Keane, Interval exchange transformations,, Math. Zeit., 141 (1975), 25. doi: 10.1007/BF01236981.

[13]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[14]

E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities,, Comment. Math. Helv., 79 (2004), 471.

[15]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. École Norm. Sup. (4), 41 (2008), 1.

[16]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth type interval exchange maps,, Journal of the Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[17]

H. Masur, Interval exchange transformations and measured foliations,, Ann of Math. (2), 115 (1982), 169. doi: 10.2307/1971341.

[18]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov homeomorphisms,, Comment. Math. Helv., 68 (1993), 289. doi: 10.1007/BF02565820.

[19]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, IN, (2002), 1015.

[20]

H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal boundary of the moduli space of quadratic differentials,, Geom. Funct. Anal., 18 (2008), 919. doi: 10.1007/s00039-008-0678-3.

[21]

G. Rauzy, Échanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[22]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math. (2), 115 (1982), 201. doi: 10.2307/1971391.

[23]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[24]

A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials,, Journal of Modern Dynamics, 2 (2008), 139.

[1]

Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395

[2]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[3]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[4]

Jon Fickenscher. A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1983-2025. doi: 10.3934/dcds.2016.36.1983

[5]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[6]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[7]

Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139

[8]

Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61

[9]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[10]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[11]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[12]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[13]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[14]

Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71.

[15]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[16]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[17]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[18]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[19]

Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741

[20]

Dong Han Kim. The dynamical Borel-Cantelli lemma for interval maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 891-900. doi: 10.3934/dcds.2007.17.891

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]