\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity

Abstract / Introduction Related Papers Cited by
  • In this paper, we study a class of nonlocal dispersion equation with monostable nonlinearity in $n$-dimensional space \[ \begin{cases} u_t - J\ast u +u+d(u(t,x))= \displaystyle \int_{\mathbb{R}^n} f_\beta (y) b(u(t-\tau,x-y)) dy, \\ u(s,x)=u_0(s,x), \ \ s\in[-\tau,0], \ x\in \mathbb{R}^n, \end{cases} \] where the nonlinear functions $d(u)$ and $b(u)$ possess the monostable characters like Fisher-KPP type, $f_\beta(x)$ is the heat kernel, and the kernel $J(x)$ satisfies ${\hat J}(\xi)=1-\mathcal{K}|\xi|^\alpha+o(|\xi|^\alpha)$ for $0<\alpha\le 2$ and $\mathcal{K}>0$. After establishing the existence for both the planar traveling waves $\phi(x\cdot{\bf e}+ct)$ for $c\ge c_*$ ($c_*$ is the critical wave speed) and the solution $u(t,x)$ for the Cauchy problem, as well as the comparison principles, we prove that, all noncritical planar wavefronts $\phi(x\cdot{\bf e}+ct)$ are globally stable with the exponential convergence rate $t^{-n/\alpha}e^{-\mu_\tau t}$ for $\mu_\tau>0$, and the critical wavefronts $\phi(x\cdot{\bf e}+c_*t)$ are globally stable in the algebraic form $t^{-n/\alpha}$, and these rates are optimal. As application,we also automatically obtain the stability of traveling wavefronts to the classical Fisher-KPP dispersion equations. The adopted approach is Fourier transform and the weighted energy method with a suitably selected weight function.
    Mathematics Subject Classification: Primary: 35K57, 34K20; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.doi: 10.1007/s002050050037.

    [2]

    M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190 pp.

    [3]

    E. Chasseigne, M. Chaves and J. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl. (9), 86 (2006), 271-291.doi: 10.1016/j.matpur.2006.04.005.

    [4]

    F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.doi: 10.1016/S0362-546X(01)00787-8.

    [5]

    X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.

    [6]

    C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156.doi: 10.1007/s00205-007-0062-8.

    [7]

    J. Coville, On uniqueness and monotonicity of solutions of non-local reaction-diffusion equation, Annali. di Matematica Pura Appl. (4), 185 (2006), 461-485.doi: 10.1007/s10231-005-0163-7.

    [8]

    J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.doi: 10.1016/j.jde.2007.11.002.

    [9]

    J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.doi: 10.1017/S0308210504000721.

    [10]

    J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819.doi: 10.1016/j.na.2003.10.030.

    [11]

    P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, 28, Springer-Verlag, Berlin-New York, 1979.

    [12]

    P. C. Fife and J. B. McLeodA phase plane discussion of convergence to travelling fronts for nonlinear diffusion, Arch. Rational Mech. Anal., 75 (1980/81), 281-314. doi: 10.1007/BF00256381.

    [13]

    T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764.doi: 10.1088/0951-7715/7/3/003.

    [14]

    J. García-Melián and F. Quirós, Fujita exponents for evolution problems with nonlocal diffusion, J. Evolution Equations, 10 (2010), 147-161.doi: 10.1007/s00028-009-0043-5.

    [15]

    S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.doi: 10.1007/s002850000047.

    [16]

    S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in "Nonlinear Dynamics and Evolution Equations" (eds. H. Brunner, X.-Q. Zhao and X. Zou), Fields Institute Communications, 48, Amer. Math. Soc., Providence, RI, (2006), 137-200.

    [17]

    F. Hamel and L. Roques, Uniqueness and stability of properties of monostable pulsating fronts, J. European Math. Soc., 13 (2011), 345-390.doi: 10.4171/JEMS/256.

    [18]

    R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $\mathbb R^N$, Nonlinear Differential Equations Appl., 15 (2008), 599-622.doi: 10.1007/s00030-008-7041-0.

    [19]

    L. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pure Appl. (9), 92 (2009), 163-187.doi: 10.1016/j.matpur.2009.04.009.

    [20]

    L. Ignat and J. D. Rossi, A nonlocal convolution-diffusion equation, J. Func. Anal., 251 (2007), 399-437.doi: 10.1016/j.jfa.2007.07.013.

    [21]

    D. Ya. Khusainov, A. F. Ivanov and I. V. Kovarzh, Solution of one heat equation with delay, Nonlinear Oscillasions (N. Y.), 12 (2009), 260-282.doi: 10.1007/s11072-009-0075-3.

    [22]

    K. Kirchgassner, On the nonlinear dynamics of travelling fronts, J. Differential Equations, 96 (1992), 256-278.doi: 10.1016/0022-0396(92)90153-E.

    [23]

    A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l' équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat à Moscou, Série Internationale Sect. A, 1 (1937), 1-26.

    [24]

    K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Differential Equations, 59 (1985), 44-70.doi: 10.1016/0022-0396(85)90137-8.

    [25]

    G. Li, M. Mei and Y. S. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model, Math. Biosci. Engin., 5 (2008), 85-100.

    [26]

    J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal., 26 (1995), 1-20.doi: 10.1137/S0036141093246105.

    [27]

    M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510.doi: 10.1016/j.jde.2008.12.026.

    [28]

    M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529.doi: 10.1016/j.jde.2008.12.020.

    [29]

    M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sec. A, 134 (2004), 579-594.doi: 10.1017/S0308210500003358.

    [30]

    M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sec. A, 138 (2008), 551-568.doi: 10.1017/S0308210506000333.

    [31]

    M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790; Erratum, SIAM J. Math. Anal., 44 (2012), 538-540.doi: 10.1137/090776342.

    [32]

    M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Seris B, 2 (2011), 379-401.

    [33]

    M. Mei and Y. S. Wong, Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equations, Math. Biosci. Engin., 6 (2009), 743-752.doi: 10.3934/mbe.2009.6.743.

    [34]

    H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal., 10 (1979), 728-732.doi: 10.1137/0510067.

    [35]

    S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150-3158.doi: 10.1016/j.na.2009.12.008.

    [36]

    D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.doi: 10.1016/0001-8708(76)90098-0.

    [37]

    J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure: I. Traveling wavefronts on unbounded domains, Roy. Soc. London Proc. Series A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.doi: 10.1098/rspa.2001.0789.

    [38]

    K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.

    [39]

    J. Wu, D. Wei and M. Mei, Analysis on the critical speed of traveling waves, Appl. Math. Lett., 20 (2007), 712-718.doi: 10.1016/j.aml.2006.08.006.

    [40]

    H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953.doi: 10.2977/prims/1260476648.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return