December  2012, 32(12): 4171-4182. doi: 10.3934/dcds.2012.32.4171

On a double penalized Smectic-A model

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla

Received  September 2011 Published  August 2012

In smectic-A liquid crystals, a unity director vector $\boldsymbol{n}$ appear modeling an average preferential direction of the molecules and also the normal vector of the layer configuration. In the E's model [5], the Ginzburg-Landau penalization related to the constraint $|\boldsymbol{n}|=1$ is considered and, assuming the constraint $\nabla\times \boldsymbol{n}=0$, $\boldsymbol{n}$ is replaced by the so-called layer variable $\varphi$ such that $\boldsymbol{n}=\nabla\varphi$.
    In this paper, a double penalized problem is introduced related to a smectic-A liquid crystal flows, considering a Cahn-Hilliard system to model the behavior of $\boldsymbol{n}$. Then, the issue of the global in time behavior of solutions is attacked, including the proof of the convergence of the whole trajectory towards a unique equilibrium state.
Citation: Blanca Climent-Ezquerra, Francisco Guillén-González. On a double penalized Smectic-A model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4171-4182. doi: 10.3934/dcds.2012.32.4171
References:
[1]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calc. Var. Partial Differential Equations, 1 (1993), 123. doi: 10.1007/BF01191614. Google Scholar

[2]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539. Google Scholar

[3]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodrĺguez Bellido, Stability for nematic liquid crystals with stretching terms,, International Journal of Bifurcations and Chaos, 20 (2010), 2937. doi: 10.1142/S0218127410027477. Google Scholar

[4]

B. Climent-Ezquerra and F. Guillén-González, Global in time solutions and time-periodicity for a Smectic-A liquid crystal model,, Communications on Pure and Applied Analysis, 9 (2010), 1473. doi: 10.3934/cpaa.2010.9.1473. Google Scholar

[5]

W. E, Nonlinear continuum theory of smectic-A liquid crystals,, Arch. Rat. Mech. Anal., 137 (1997), 159. doi: 10.1007/s002050050026. Google Scholar

[6]

M. Grasselli and H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force,, preprint., (). Google Scholar

[7]

F. H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[8]

C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity,, Discrete and Continuous Dynamical Systems, 6 (2000), 591. doi: 10.3934/dcds.2000.6.591. Google Scholar

[9]

A. Segatti and H. Wu, Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows,, preprint, (). Google Scholar

[10]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows,, Discrete and Continuous Dynamical System, 26 (2010), 379. doi: 10.3934/dcds.2010.26.379. Google Scholar

[11]

S. Zheng, "Nonlinear Evolution Equations,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133 (2004). Google Scholar

show all references

References:
[1]

F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional,, Calc. Var. Partial Differential Equations, 1 (1993), 123. doi: 10.1007/BF01191614. Google Scholar

[2]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539. Google Scholar

[3]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodrĺguez Bellido, Stability for nematic liquid crystals with stretching terms,, International Journal of Bifurcations and Chaos, 20 (2010), 2937. doi: 10.1142/S0218127410027477. Google Scholar

[4]

B. Climent-Ezquerra and F. Guillén-González, Global in time solutions and time-periodicity for a Smectic-A liquid crystal model,, Communications on Pure and Applied Analysis, 9 (2010), 1473. doi: 10.3934/cpaa.2010.9.1473. Google Scholar

[5]

W. E, Nonlinear continuum theory of smectic-A liquid crystals,, Arch. Rat. Mech. Anal., 137 (1997), 159. doi: 10.1007/s002050050026. Google Scholar

[6]

M. Grasselli and H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force,, preprint., (). Google Scholar

[7]

F. H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[8]

C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity,, Discrete and Continuous Dynamical Systems, 6 (2000), 591. doi: 10.3934/dcds.2000.6.591. Google Scholar

[9]

A. Segatti and H. Wu, Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows,, preprint, (). Google Scholar

[10]

H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows,, Discrete and Continuous Dynamical System, 26 (2010), 379. doi: 10.3934/dcds.2010.26.379. Google Scholar

[11]

S. Zheng, "Nonlinear Evolution Equations,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133 (2004). Google Scholar

[1]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[2]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[3]

Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230

[4]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[5]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[6]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[7]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[8]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[9]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[10]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[11]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[12]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[13]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[14]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[15]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[16]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[17]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[18]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[19]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[20]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

[Back to Top]