\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics

Abstract / Introduction Related Papers Cited by
  • We show existence of global conservative solutions of the Cauchy problem for the Camassa--Holm equation $u_t-u_{txx}+\kappa u_x+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with nonvanishing and distinct spatial asymptotics.
    Mathematics Subject Classification: Primary: 35Q53, 35B30; Secondary: 35B35, 35D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bendahmane, G. M. Coclite and K. H. Karlsen, $H^1$-perturbations of smooth solutions for a weakly dissipative hyperelastic-rod wave equation, Mediterranean Journal of Mathematics, 3 (2006), 419-432.

    [2]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.

    [3]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Analysis and Applications, 5 (2007), 1-27.

    [4]

    A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation, J. Math. Pures Appl., 94 (2010), 68-92.

    [5]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [6]

    R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.doi: 10.1016/S0065-2156(08)70254-0.

    [7]

    A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 41 (2005), 023506.

    [8]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [9]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [10]

    K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation, J. Differential Equations, 250 (2011), 1460-1492.doi: 10.1016/j.jde.2010.07.006.

    [11]

    K. Grunert, H. Holden and X. RaynaudLipschitz metric for the Camassa-Holm equation on the line, Discrete Contin. Dyn. Syst., to appear.

    [12]

    H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.doi: 10.1080/03605300601088674.

    [13]

    H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 233 (2007), 448-484.doi: 10.1016/j.jde.2006.09.007.

    [14]

    H. Holden and X. Raynaud, Dissipative solutions of the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.doi: 10.3934/dcds.2009.24.1047.

    [15]

    H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.doi: 10.5802/aif.2375.

    [16]

    J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.doi: 10.1016/j.jde.2004.09.007.

    [17]

    J. Lenells, Classification of all traveling-wave solutions for some nonlinear dispersive equations, Phil. Trans. R. Soc. A, 365 (2007), 2291-2298.doi: 10.1098/rsta.2007.2009.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return