April  2013, 33(4): 1375-1388. doi: 10.3934/dcds.2013.33.1375

Observable optimal state points of subadditive potentials

1. 

Instituto de Matemática y Estadística Rafael Laguardia, Universidad de la República, Av. Herrera y Reissig 565, C.P.11300, Montevideo, Uruguay

2. 

Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu

Received  October 2011 Revised  June 2012 Published  October 2012

For a sequence of subadditive potentials, a method of choosing state points with negative growth rates for an ergodic dynamical system was given in [5]. This paper first generalizes this result to the non-ergodic dynamics, and then proves that under some mild additional hypothesis, one can choose points with negative growth rates from a positive Lebesgue measure set, even if the system does not preserve any measure that is absolutely continuous with respect to Lebesgue measure.
Citation: Eleonora Catsigeras, Yun Zhao. Observable optimal state points of subadditive potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1375-1388. doi: 10.3934/dcds.2013.33.1375
References:
[1]

Y. Cao, On growth rates of sub-additive functions for semi-flows: determined and random cases,, J. Diff. Eqns, 231 (2006), 1. doi: 10.1016/j.jde.2006.08.016. Google Scholar

[2]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Polish Acad. Sci. Math., 59 (2011), 151. doi: 10.4064/ba59-2-5. Google Scholar

[3]

E. Catsigeras, Milnor-like attractors,, preprint, (). Google Scholar

[4]

X. Dai, Y. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities,, Automatica, 47 (2011), 1512. doi: 10.1016/j.automatica.2011.02.034. Google Scholar

[5]

X. Dai, Optimal state points of the subadditive ergodic theorem,, Nonlinearity, 24 (2011), 1565. doi: 10.1088/0951-7715/24/5/009. Google Scholar

[6]

T. Golenishcheva-Kutuzova and V. Kleptsyn, Convergence of the Krylov-Bogolyubov procedure in Bowan's example,, (Russian) Mat. Zametki, 82 (2007), 678. Google Scholar

[7]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications,", volume 54, (1995). Google Scholar

[8]

J. F. C. Kingman, Subadditive ergodic theory,, Ann. Probab., 1 (1973), 883. Google Scholar

[9]

M. Misiurewicz, Ergodic natural measures,, in, (2005), 1. Google Scholar

[10]

S. J. Schreiber, On growth rates of subadditive functions for semi-flows,, J. Diff. Eqns, 148 (1998), 334. doi: 10.1006/jdeq.1998.3471. Google Scholar

[11]

K. Sigmund, Generic properties of invariant measures for axiom A-diffeomorphisms,, Inventiones Math., 11 (1970), 99. doi: 10.1007/BF01404606. Google Scholar

[12]

K. Sigmund, On the distribution of periodic points for $\beta-$shifts,, Monatsh. Math, 82 (1976), 247. doi: 10.1007/BF01526329. Google Scholar

[13]

R. Sturman, and J. Stark, Semi-uniform ergodic theorems and applications to forced systems,, Nonlinearity, 13 (2000), 113. Google Scholar

[14]

Y. Takahashi, Entropy Functional (free energy) for Dynamical Systems and their Random Perturbations,, in, 32 (1982), 437. Google Scholar

[15]

F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy,, Bol. Soc. Brasil. Math., 25 (1994), 107. doi: 10.1007/BF01232938. Google Scholar

[16]

P. Walters, "An Introduction to Ergodic Theory,", GTM 79, (1982). Google Scholar

show all references

References:
[1]

Y. Cao, On growth rates of sub-additive functions for semi-flows: determined and random cases,, J. Diff. Eqns, 231 (2006), 1. doi: 10.1016/j.jde.2006.08.016. Google Scholar

[2]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Polish Acad. Sci. Math., 59 (2011), 151. doi: 10.4064/ba59-2-5. Google Scholar

[3]

E. Catsigeras, Milnor-like attractors,, preprint, (). Google Scholar

[4]

X. Dai, Y. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities,, Automatica, 47 (2011), 1512. doi: 10.1016/j.automatica.2011.02.034. Google Scholar

[5]

X. Dai, Optimal state points of the subadditive ergodic theorem,, Nonlinearity, 24 (2011), 1565. doi: 10.1088/0951-7715/24/5/009. Google Scholar

[6]

T. Golenishcheva-Kutuzova and V. Kleptsyn, Convergence of the Krylov-Bogolyubov procedure in Bowan's example,, (Russian) Mat. Zametki, 82 (2007), 678. Google Scholar

[7]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications,", volume 54, (1995). Google Scholar

[8]

J. F. C. Kingman, Subadditive ergodic theory,, Ann. Probab., 1 (1973), 883. Google Scholar

[9]

M. Misiurewicz, Ergodic natural measures,, in, (2005), 1. Google Scholar

[10]

S. J. Schreiber, On growth rates of subadditive functions for semi-flows,, J. Diff. Eqns, 148 (1998), 334. doi: 10.1006/jdeq.1998.3471. Google Scholar

[11]

K. Sigmund, Generic properties of invariant measures for axiom A-diffeomorphisms,, Inventiones Math., 11 (1970), 99. doi: 10.1007/BF01404606. Google Scholar

[12]

K. Sigmund, On the distribution of periodic points for $\beta-$shifts,, Monatsh. Math, 82 (1976), 247. doi: 10.1007/BF01526329. Google Scholar

[13]

R. Sturman, and J. Stark, Semi-uniform ergodic theorems and applications to forced systems,, Nonlinearity, 13 (2000), 113. Google Scholar

[14]

Y. Takahashi, Entropy Functional (free energy) for Dynamical Systems and their Random Perturbations,, in, 32 (1982), 437. Google Scholar

[15]

F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy,, Bol. Soc. Brasil. Math., 25 (1994), 107. doi: 10.1007/BF01232938. Google Scholar

[16]

P. Walters, "An Introduction to Ergodic Theory,", GTM 79, (1982). Google Scholar

[1]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[2]

Youngna Choi. Attractors from one dimensional Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 715-730. doi: 10.3934/dcds.2004.11.715

[3]

Vanderlei Horita, Nivaldo Muniz. Basin problem for Hénon-like attractors in arbitrary dimensions. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 481-504. doi: 10.3934/dcds.2006.15.481

[4]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[5]

Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443

[6]

Donald Ornstein, Benjamin Weiss. Entropy is the only finitely observable invariant. Journal of Modern Dynamics, 2007, 1 (1) : 93-105. doi: 10.3934/jmd.2007.1.93

[7]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[8]

Zeng Lian, Peidong Liu, Kening Lu. Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3905-3920. doi: 10.3934/dcds.2017164

[9]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (I) --- Basic state solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1091-1116. doi: 10.3934/dcdsb.2004.4.1091

[10]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[11]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[12]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[13]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[14]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[15]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure & Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[16]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[17]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[18]

Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122

[19]

Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383

[20]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]