April  2013, 33(4): 1407-1429. doi: 10.3934/dcds.2013.33.1407

Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds

1. 

College of Mathematics and Econometrics, Hunan University, Changsha 410082

2. 

Institute of Contemporary Mathematics, Henan University, School of Mathematics and Information Science, Henan University, Kaifeng 475004

Received  July 2011 Revised  August 2012 Published  October 2012

Let $(\mathcal{M}, \tilde{g})$ be an $N$-dimensional smooth compact Riemannian manifold. We consider the problem $$ \varepsilon^2 Δ_{\tilde{g}} \tilde{u} + V(\tilde{z})\tilde{u}(1-\tilde{u}^2)=0            in \mathcal{M}, $$ where $\varepsilon >0$ is a small parameter and $V$ is a positive, smooth function in $\mathcal{M}$. Let $ \mathcal{K}\subset \mathcal{M}$ be an $(N-1)$-dimensional smooth submanifold that divides $\mathcal{M}$ into two disjoint components $\mathcal{M}_{\pm}$. We assume $\mathcal{K}$ is stationary and non-degenerate relative to the weighted area functional $\int_{\mathcal{K}}V^{\frac{1}{2}}$. We prove that there exist two transition layer solutions $u_\varepsilon^{(1)}, u_\varepsilon^{(2)}$ when $\varepsilon$ is sufficiently small. The first layer solution $u_\varepsilon^{(1)}$ approaches $-1$ in $\mathcal{M}_{-}$ and $+1$ in $\mathcal{M}_{+}$ as $\varepsilon$ tends to 0, while the other solution $u_\varepsilon^{(2)}$ exhibits a transition layer in the opposite direction.
Citation: Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407
References:
[1]

N. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundary,, Cal. Var. PDE, 11 (2000), 233.

[2]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.

[3]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 117.

[4]

E. N. Dancer and S. Yan, multi-layer solutions for an elliptic problem,, J. Diff. Eqns., 194 (2003), 382.

[5]

M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458.

[6]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 70 (2007), 113.

[7]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Archive Rational Mechanical Analysis, 190 (2008), 141.

[8]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Didcrete Contin. Dunam. Systems, 28 (2010), 975. doi: 10.3934/dcds.2010.28.975.

[9]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918. doi: 10.1007/s00039-010-0083-6.

[10]

Y. Du and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation,, J. Diff. Eqns., 238 (2007), 87.

[11]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 249 (2010), 215.

[12]

G. Flores, P. Padilla and Y. Tonegawa, Higher energy solutions in the theory of phase transitions: A variational approach,, J. Diff. Eqns., 169 (2001), 190.

[13]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh, 11A (1989), 69.

[14]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura et Aplicata, 184 (2005), 17. doi: 10.1007/s10231-003-0088-y.

[15]

F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, Geom. Funct. Anal., 16 (2006), 924.

[16]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105.

[17]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.

[18]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, J. Fixed Point Theory Appl., 1 (2007), 305.

[19]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 357.

[20]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.

[21]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 20 (2003), 107.

[22]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359.

[23]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551.

[24]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Commun. Pure Appl. Math., 56 (2003), 1078.

[25]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157.

[26]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.

[27]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175.

[28]

J. Yang and X. Yang, Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation on higher dimensional domain,, Commun. Pure Appl. Anal., 1 (2013), 303.

show all references

References:
[1]

N. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundary,, Cal. Var. PDE, 11 (2000), 233.

[2]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.

[3]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 117.

[4]

E. N. Dancer and S. Yan, multi-layer solutions for an elliptic problem,, J. Diff. Eqns., 194 (2003), 382.

[5]

M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458.

[6]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 70 (2007), 113.

[7]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Archive Rational Mechanical Analysis, 190 (2008), 141.

[8]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Didcrete Contin. Dunam. Systems, 28 (2010), 975. doi: 10.3934/dcds.2010.28.975.

[9]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918. doi: 10.1007/s00039-010-0083-6.

[10]

Y. Du and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation,, J. Diff. Eqns., 238 (2007), 87.

[11]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 249 (2010), 215.

[12]

G. Flores, P. Padilla and Y. Tonegawa, Higher energy solutions in the theory of phase transitions: A variational approach,, J. Diff. Eqns., 169 (2001), 190.

[13]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh, 11A (1989), 69.

[14]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura et Aplicata, 184 (2005), 17. doi: 10.1007/s10231-003-0088-y.

[15]

F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, Geom. Funct. Anal., 16 (2006), 924.

[16]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105.

[17]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.

[18]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, J. Fixed Point Theory Appl., 1 (2007), 305.

[19]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 357.

[20]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.

[21]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 20 (2003), 107.

[22]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359.

[23]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551.

[24]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Commun. Pure Appl. Math., 56 (2003), 1078.

[25]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157.

[26]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.

[27]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175.

[28]

J. Yang and X. Yang, Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation on higher dimensional domain,, Commun. Pure Appl. Anal., 1 (2013), 303.

[1]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

[2]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[3]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[4]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[5]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[6]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[7]

Jean-Paul Chehab, Alejandro A. Franco, Youcef Mammeri. Boundary control of the number of interfaces for the one-dimensional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 87-100. doi: 10.3934/dcdss.2017005

[8]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[9]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[10]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[11]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[12]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[13]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[14]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2019077

[15]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[16]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[17]

Ken Shirakawa. Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies. Conference Publications, 2009, 2009 (Special) : 697-707. doi: 10.3934/proc.2009.2009.697

[18]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[19]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[20]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]