April  2013, 33(4): 1451-1476. doi: 10.3934/dcds.2013.33.1451

Hyperbolic measures with transverse intersections of stable and unstable manifolds

1. 

Faculty of Engineering, Kyushu Institute of Technology, Tobata, Fukuoka 804-8550, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received  January 2011 Revised  September 2012 Published  October 2012

Let $f$ be a diffeomorphism of a manifold preserving a hyperbolic Borel probability measure $ μ $ having transverse intersections for almost every pair of stable and unstable manifolds. A lower bound on the Hausdorff dimension of generic sets is given in terms of the Lyapunov exponents and the metric entropy. Furthermore we obtain a lower bound for the large deviation rate.
Citation: Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451
References:
[1]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps,, J. Stat. Phys., 125 (2006), 411. doi: 10.1007/s10955-006-9183-y. Google Scholar

[2]

L. Barreira and Ya. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", Univ. Lect. Ser. 23, (2002). Google Scholar

[3]

L. Barreira, Ya. B. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures,, Ann. of Math., 149 (1999), 755. doi: 10.2307/121072. Google Scholar

[4]

L. R. Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems,, Ergod. Th. & Dynam. Sys., 28 (2008), 587. Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125. doi: 10.1090/S0002-9947-1973-0338317-X. Google Scholar

[6]

M. Brin, Hölder continuity of invariant distributions,, in, (2001), 91. Google Scholar

[7]

M. Brin, J. Feldman and A. B. Katok, Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents,, Ann. of. Math., 113 (1981), 159. doi: 10.2307/1971136. Google Scholar

[8]

Y. Cao, S. Luzzatto and I. Rios, The boundary of hyperbolicity for Hénon-like families,, Ergod. Th. & Dynam. Sys., 28 (2008), 1049. Google Scholar

[9]

A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces,, in, 66-67 (1979), 66. Google Scholar

[10]

D. J. Feng, K. S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv.Math., 169 (2002), 58. doi: 10.1006/aima.2001.2054. Google Scholar

[11]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions,, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1. Google Scholar

[12]

M. Gerber and A. B. Katok, Smooth models of Thurston's pseudo-Anosov maps,, Ann. scient. Éc. Norm. Sup., 15 (1982), 173. Google Scholar

[13]

A. B. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Ètudes Sci. Publ. Math., 51 (1980), 137. doi: 10.1007/BF02684777. Google Scholar

[14]

A. B. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995). Google Scholar

[15]

A. B. Katok and L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior,, Supplement to, (1995), 659. Google Scholar

[16]

Y. Kifer, Large deviations in dynamical systems and stochastic processes,, Trans. Amer. Math. Soc., 321 (1990), 505. doi: 10.1090/S0002-9947-1990-1025756-7. Google Scholar

[17]

F. Ledrappier and J. M. Strelcyn, A proof of estimation from below in Pesin's entropy formula,, Ergod. Th. & Dynam. Sys., 2 (1982), 203. Google Scholar

[18]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part I : Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math., 122 (1985), 509. doi: 10.2307/1971328. Google Scholar

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension,, Ann. of Math., 122 (1985), 540. doi: 10.2307/1971329. Google Scholar

[20]

R. Mañé, Contributions to the stability conjecture,, Topology, 17 (1978), 383. doi: 10.1016/0040-9383(78)90005-8. Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer, (1987). Google Scholar

[22]

I. Melbourne and M. Nicol, Large deviations for non-uniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2008), 6661. doi: 10.1090/S0002-9947-08-04520-0. Google Scholar

[23]

S. Orey and S. Pelikan, Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms,, Trans. Amer. Math. Soc., 315 (1989), 741. doi: 10.2307/2001304. Google Scholar

[24]

Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents,, Izv. Akd. Nauk SSSR Ser. Mat., 40 (1976), 1332. Google Scholar

[25]

Ya. B. Pesin, "Dimension Theory in Dynamical Systems: Contemporary Views and Applications,", Chicago Lect. Math. Ser., (1997). Google Scholar

[26]

Ya. B. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Stat. Phys., 86 (1997), 233. doi: 10.1007/BF02180206. Google Scholar

[27]

Ya. B. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples,, Chaos, 7 (1997), 89. Google Scholar

[28]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts,, Nonlinearity, 18 (2005), 237. doi: 10.1088/0951-7715/18/1/013. Google Scholar

[29]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets,, Ergod. Th. & Dynam. Sys., 27 (2007), 929. doi: 10.1017/S0143385706000824. Google Scholar

[30]

E. Pujals and M. Sambarino, A sufficient condition for robustly minimal foliations,, Ergod. Th. & Dynam. Sys., 26 (2006), 281. doi: 10.1017/S0143385705000568. Google Scholar

[31]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315. doi: 10.1090/S0002-9939-09-10085-0. Google Scholar

[32]

J. Schmeling and H. Weiss, An overview of the dimension theory of dynamical systems,, in, (2001), 429. Google Scholar

[33]

Y. Takahashi, Two aspects of large deviation theory for large time,, in, (1987), 363. Google Scholar

[34]

F. Takens and E. Verbitskiy, Multifractal analysis of local entropies for expansive homeomorphisms with specification,, Commun. Math. Phys., 203 (1999), 593. doi: 10.1007/s002200050627. Google Scholar

[35]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain noncompact sets,, Ergod. Th. & Dynam. Sys., 23 (2003), 317. Google Scholar

[36]

M. Urbański and C. Wolf, Ergodic Theory of Parabolic Horseshoes,, Commun. Math. Phys., 281 (2008), 711. doi: 10.1007/s00220-008-0498-1. Google Scholar

[37]

L.-S. Young, Dimension, entropy and Lyapunov exponents,, Ergod. Th. & Dynam. Sys., 2 (1982), 109. Google Scholar

[38]

L.-S. Young, Some large deviation results for dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525. doi: 10.2307/2001318. Google Scholar

show all references

References:
[1]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps,, J. Stat. Phys., 125 (2006), 411. doi: 10.1007/s10955-006-9183-y. Google Scholar

[2]

L. Barreira and Ya. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", Univ. Lect. Ser. 23, (2002). Google Scholar

[3]

L. Barreira, Ya. B. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures,, Ann. of Math., 149 (1999), 755. doi: 10.2307/121072. Google Scholar

[4]

L. R. Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems,, Ergod. Th. & Dynam. Sys., 28 (2008), 587. Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125. doi: 10.1090/S0002-9947-1973-0338317-X. Google Scholar

[6]

M. Brin, Hölder continuity of invariant distributions,, in, (2001), 91. Google Scholar

[7]

M. Brin, J. Feldman and A. B. Katok, Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents,, Ann. of. Math., 113 (1981), 159. doi: 10.2307/1971136. Google Scholar

[8]

Y. Cao, S. Luzzatto and I. Rios, The boundary of hyperbolicity for Hénon-like families,, Ergod. Th. & Dynam. Sys., 28 (2008), 1049. Google Scholar

[9]

A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces,, in, 66-67 (1979), 66. Google Scholar

[10]

D. J. Feng, K. S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv.Math., 169 (2002), 58. doi: 10.1006/aima.2001.2054. Google Scholar

[11]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions,, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1. Google Scholar

[12]

M. Gerber and A. B. Katok, Smooth models of Thurston's pseudo-Anosov maps,, Ann. scient. Éc. Norm. Sup., 15 (1982), 173. Google Scholar

[13]

A. B. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Ètudes Sci. Publ. Math., 51 (1980), 137. doi: 10.1007/BF02684777. Google Scholar

[14]

A. B. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995). Google Scholar

[15]

A. B. Katok and L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior,, Supplement to, (1995), 659. Google Scholar

[16]

Y. Kifer, Large deviations in dynamical systems and stochastic processes,, Trans. Amer. Math. Soc., 321 (1990), 505. doi: 10.1090/S0002-9947-1990-1025756-7. Google Scholar

[17]

F. Ledrappier and J. M. Strelcyn, A proof of estimation from below in Pesin's entropy formula,, Ergod. Th. & Dynam. Sys., 2 (1982), 203. Google Scholar

[18]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part I : Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math., 122 (1985), 509. doi: 10.2307/1971328. Google Scholar

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension,, Ann. of Math., 122 (1985), 540. doi: 10.2307/1971329. Google Scholar

[20]

R. Mañé, Contributions to the stability conjecture,, Topology, 17 (1978), 383. doi: 10.1016/0040-9383(78)90005-8. Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer, (1987). Google Scholar

[22]

I. Melbourne and M. Nicol, Large deviations for non-uniformly hyperbolic systems,, Trans. Amer. Math. Soc., 360 (2008), 6661. doi: 10.1090/S0002-9947-08-04520-0. Google Scholar

[23]

S. Orey and S. Pelikan, Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms,, Trans. Amer. Math. Soc., 315 (1989), 741. doi: 10.2307/2001304. Google Scholar

[24]

Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents,, Izv. Akd. Nauk SSSR Ser. Mat., 40 (1976), 1332. Google Scholar

[25]

Ya. B. Pesin, "Dimension Theory in Dynamical Systems: Contemporary Views and Applications,", Chicago Lect. Math. Ser., (1997). Google Scholar

[26]

Ya. B. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Stat. Phys., 86 (1997), 233. doi: 10.1007/BF02180206. Google Scholar

[27]

Ya. B. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples,, Chaos, 7 (1997), 89. Google Scholar

[28]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts,, Nonlinearity, 18 (2005), 237. doi: 10.1088/0951-7715/18/1/013. Google Scholar

[29]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets,, Ergod. Th. & Dynam. Sys., 27 (2007), 929. doi: 10.1017/S0143385706000824. Google Scholar

[30]

E. Pujals and M. Sambarino, A sufficient condition for robustly minimal foliations,, Ergod. Th. & Dynam. Sys., 26 (2006), 281. doi: 10.1017/S0143385705000568. Google Scholar

[31]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315. doi: 10.1090/S0002-9939-09-10085-0. Google Scholar

[32]

J. Schmeling and H. Weiss, An overview of the dimension theory of dynamical systems,, in, (2001), 429. Google Scholar

[33]

Y. Takahashi, Two aspects of large deviation theory for large time,, in, (1987), 363. Google Scholar

[34]

F. Takens and E. Verbitskiy, Multifractal analysis of local entropies for expansive homeomorphisms with specification,, Commun. Math. Phys., 203 (1999), 593. doi: 10.1007/s002200050627. Google Scholar

[35]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain noncompact sets,, Ergod. Th. & Dynam. Sys., 23 (2003), 317. Google Scholar

[36]

M. Urbański and C. Wolf, Ergodic Theory of Parabolic Horseshoes,, Commun. Math. Phys., 281 (2008), 711. doi: 10.1007/s00220-008-0498-1. Google Scholar

[37]

L.-S. Young, Dimension, entropy and Lyapunov exponents,, Ergod. Th. & Dynam. Sys., 2 (1982), 109. Google Scholar

[38]

L.-S. Young, Some large deviation results for dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 525. doi: 10.2307/2001318. Google Scholar

[1]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[2]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[3]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

Koen De Turck, Sabine Wittevrongel. Receiver buffer behavior for the selective repeat protocol over a wireless channel: An exact and large-deviations analysis. Journal of Industrial & Management Optimization, 2010, 6 (3) : 603-619. doi: 10.3934/jimo.2010.6.603

[6]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[7]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[8]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[9]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[10]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[11]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[12]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[13]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[14]

Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523

[15]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[16]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[17]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[18]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[19]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[20]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]