Citation: |
[1] |
J. Bourgain, Scattering in the energy space and below in 3D NLS, Journal d'Analyse Mathematique, 4 (1998), 267-297.doi: 10.1007/BF02788703. |
[2] |
J. Bourgain, Refinements of Strichartz' inequality and applications to 2{D-NLS with critical nonlinearity, International Mathematical Research Notices, 5 (1998), 253-283.doi: 10.1155/S1073792898000191. |
[3] |
J. Bourgain, "Global Solutions of Nonlinear Schrödinger Equations," American Mathematical Society, American Mathematical Society Colloquium Publications, Providence, RI. 1999. |
[4] |
T. Cazenave, "An Introduction to Nonlinear Schrödinger Equations," Instituto de Matematica - UFRJ - Rio de Janeiro, 1996. |
[5] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.doi: 10.1007/BF01258601. |
[6] |
T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Analysis, 14 (1990), 807-836.doi: 10.1016/0362-546X(90)90023-A. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Mathematical Research Letters, 9 (2002), 659-682. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbfR^{3}$, Communications on Pure and Applied Mathematics, 21 (2004), 987-1014doi: 10.1002/cpa.20029. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for the energy - critical nonlinear Schrödinger equation on $\mathbfR^3$, Annals of Mathematics. Second Series, 167 (2008), 767-865doi: 10.4007/annals.2008.167.767. |
[10] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on $\mathbfR^{2}$, Discrete and Continuous Dynamical Systems A, 21 (2007), 665-686.doi: 10.3934/dcds.2008.21.665. |
[11] |
J. Colliander and T. Roy, Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $\mathbbR^2$, Communications in Pure and Applied Analysis, 10 (2011), 397-414.doi: 10.3934/cpaa.2011.10.397. |
[12] |
B. Dodson, Global well - posedness and scattering for the defocusing $L^2$ - critical nonlinear Schrödinger equation when $d = 2$, preprint, arXiv:1006.1375, |
[13] |
J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Communications in Mathematical Physics, 144 (1992), 163-188. |
[14] |
J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, Journal de Mathmatiques Pures et Appliques, 9 (1985), 363-401. |
[15] |
M. Keel and T. Tao, Local and global well posedness of wave maps on $\mathbfR^{1 + 1}$ for rough data, International Mathematics Research Notices, 21 (1998), 1117-1156.doi: 10.1155/S107379289800066X. |
[16] |
M. Keel and T. Tao, Endpoint strichartz estimates, American Journal of Mathematics, 120 (1998), 945-957. |
[17] |
C. Kenig and F. Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962.doi: 10.1090/S0002-9947-09-04722-9. |
[18] |
R. Killip and M. Visan, "Nonlinear Schrodinger Equations at Critical Regularity," Clay Lecture Notes 2009. Available from: http://www.math.ucla.edu/~ visan/lecturenotes.html. |
[19] |
J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, Journal of Functional Analysis, 30 (1978), 245-263.doi: 10.1016/0022-1236(78)90073-3. |
[20] |
T. Roy, Adapted linear - nonlinear decomposition and global well - posedness for solutions to the defocusing cubic wave equation on $\mathbbR^3$, Discrete and Continuous Dynamical Systems. Series A., 24 (2009), 1307-1323.doi: 10.3934/dcds.2009.24.1307. |
[21] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, NJ, 1970. |
[22] |
E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton University Press, Princeton, NJ, 1993. |
[23] |
W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, 73. American Mathematical Society, Providence, RI, 1989. |
[24] |
R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Mathematical Journal, 44 (1977), 705-714. |
[25] |
Q. Su, Global well - posedness and scattering for the defocusing, cubic NLS in $\mathbbR^3$, Mathematical Research Letters, 19 (2012), 431-451. |
[26] |
T. Tao, "Nonlinear Dispersive Equations," CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006 |
[27] |
M. E. Taylor, "Pseudodifferential Operators and Nonlinear PDE," Birkhäuser, Boston, 1991.doi: 10.1007/978-1-4612-0431-2. |
[28] |
M. E. Taylor, "Partial Differential Equations I - III," Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4684-9320-7. |
[29] |
M. E. Taylor, "Tools for PDE," American Mathematical Society, Mathematical Surveys and Monographs, 31 Providence, RI, 2000. |