May  2013, 33(5): 1965-1973. doi: 10.3934/dcds.2013.33.1965

Phase transitions in one-dimensional subshifts

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States

Received  December 2011 Revised  August 2012 Published  December 2012

In this note we give simple examples of one-dimensional mixing subshift with positive topological entropy which have two distinct measures of maximal entropy. We also give examples of subshifts which have two mutually singular equilibrium states for Hölder continuous functions. We also indicate how the construction can be extended to yield examples with any number of equilibrium states.
Citation: Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965
References:
[1]

R. Bowen, Some systems with unique equilibrium states,, Math. Syst. Th., 8 (1975), 193.

[2]

R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type,, Ergod. Th. Dynam. Sys., 14 (1994), 213. doi: 10.1017/S0143385700007859.

[3]

R. Burton and J. E. Steif, New results on measures of maximal entropy,, Israel J. Math., 89 (1995), 275. doi: 10.1007/BF02808205.

[4]

H. O. Georgii, "Gibbs Measures and Phase Transitions,", de Gruyter Studies in Mathematics, 9 (1988). doi: 10.1515/9783110850147.

[5]

B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph,, Dokl. Akad. Nauk. SSSR, 192 (1970), 744.

[6]

Hofbauer, Examples for the nonuniqueness of the equilibrium state,, AMS Transactions, 228 (1977), 223.

[7]

W. Krieger, On the uniqueness of the equilibrium state,, Math. Systems Theory, 8 (1974), 97.

[8]

P Walter, "An Introduction to Ergodic Theory,'', Springer-Verlag, 79 (1982).

show all references

References:
[1]

R. Bowen, Some systems with unique equilibrium states,, Math. Syst. Th., 8 (1975), 193.

[2]

R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type,, Ergod. Th. Dynam. Sys., 14 (1994), 213. doi: 10.1017/S0143385700007859.

[3]

R. Burton and J. E. Steif, New results on measures of maximal entropy,, Israel J. Math., 89 (1995), 275. doi: 10.1007/BF02808205.

[4]

H. O. Georgii, "Gibbs Measures and Phase Transitions,", de Gruyter Studies in Mathematics, 9 (1988). doi: 10.1515/9783110850147.

[5]

B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph,, Dokl. Akad. Nauk. SSSR, 192 (1970), 744.

[6]

Hofbauer, Examples for the nonuniqueness of the equilibrium state,, AMS Transactions, 228 (1977), 223.

[7]

W. Krieger, On the uniqueness of the equilibrium state,, Math. Systems Theory, 8 (1974), 97.

[8]

P Walter, "An Introduction to Ergodic Theory,'', Springer-Verlag, 79 (1982).

[1]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[2]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[3]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[4]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[5]

Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001

[6]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[7]

Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497

[8]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[9]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[10]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[11]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[12]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[13]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[14]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[15]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[16]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[17]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[18]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

[19]

Alexander Arbieto, Luciano Prudente. Uniqueness of equilibrium states for some partially hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 27-40. doi: 10.3934/dcds.2012.32.27

[20]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]