May  2013, 33(5): 2189-2209. doi: 10.3934/dcds.2013.33.2189

Application of the subharmonic Melnikov method to piecewise-smooth systems

1. 

Mathematics Division, Department of Information Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan

Received  December 2011 Revised  July 2012 Published  December 2012

We extend a refined version of the subharmonic Melnikov method to piecewise-smooth systems and demonstrate the theory for bi- and trilinear oscillators. Fundamental results for approximating solutions of piecewise-smooth systems by those of smooth systems are given and used to obtain the main result. Special attention is paid to degenerate resonance behavior, and analytical results are illustrated by numerical ones.
Citation: Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, (1989).

[2]

V. I. Babitsky and V. L. Krupenin, "Vibration of Strongly Nonlinear Discontinuous Systems,", Springer-Verlag, (2001).

[3]

A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator,, SIAM J. Math. Anal., 40 (2009), 2478. doi: 10.1137/070701091.

[4]

T. K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis,, Trans. ASME, 27 (1960), 640.

[5]

C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators,, J. Differential Equations, 112 (1994), 407. doi: 10.1006/jdeq.1994.1110.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-Smooth Dynamical Systems: Theory and Applications,", Springer-Verlag, (2008).

[7]

E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997).

[8]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges,, Z. Angew. Math. Phys., 40 (1989), 172. doi: 10.1007/BF00944997.

[9]

I. V. Gorelyshev and A. I. Neishtadt, On the adiabatic theory of perturbations for systems with elastic reflections,, J. Appl. Math. Mech. (PMM), 70 (2006), 4. doi: 10.1016/j.jappmathmech.2006.03.015.

[10]

I. V. Gorelyshev and A. I. Neishtadt, Jump in adiabatic invariant at a transition between modes of motion for systems with impacts,, Nonlinearity, 21 (2008), 661. doi: 10.1088/0951-7715/21/4/002.

[11]

B. D. Greenspan and P. Holmes, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations,, in, (1983), 172.

[12]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields,", Springer-Verlag, (1983).

[13]

V. K. Melnikov, On the stability of the center for time-periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.

[14]

J. A. Murdock, "Perturbations: Theory and Methods,", John Wiley & Sons, (1991).

[15]

A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations,", John Wiley & Sons, (1979).

[16]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).

[17]

K. Yagasaki, The Melnikov theory for subharmonics and their bifurcations in forced oscillations,, SIAM J. Appl. Math., 56 (1996), 1720. doi: 10.1137/S0036139995281317.

[18]

K. Yagasaki, Second-order averaging and Melnikov analyses for forced non-linear oscillators,, J. Sound Vibration, 190 (1996), 587. doi: 10.1006/jsvi.1996.0080.

[19]

K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators,, Nonlinear Dynam., 20 (1999), 319. doi: 10.1023/A:1008336402517.

[20]

K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations,, J. Differential Equations, 185 (2002), 1. doi: 10.1006/jdeq.2002.4177.

[21]

K. Yagasaki, Degenerate resonances in forced oscillators,, Discrete Continuous Dynam. Systems - B, 3 (2003), 423. doi: 10.3934/dcdsb.2003.3.423.

[22]

K. Yagasaki, Nonlinear dynamics of vibrating microcantilevers in tapping mode atomic force microscopy,, Phys. Rev. B, 70 (2004).

[23]

K. Yagasaki, Bifurcations and chaos in vibrating microcantilevers of tapping mode atomic force microscopy,, Int. J. Non-Linear Mech., 42 (2007), 658.

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, (1989).

[2]

V. I. Babitsky and V. L. Krupenin, "Vibration of Strongly Nonlinear Discontinuous Systems,", Springer-Verlag, (2001).

[3]

A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator,, SIAM J. Math. Anal., 40 (2009), 2478. doi: 10.1137/070701091.

[4]

T. K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis,, Trans. ASME, 27 (1960), 640.

[5]

C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators,, J. Differential Equations, 112 (1994), 407. doi: 10.1006/jdeq.1994.1110.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-Smooth Dynamical Systems: Theory and Applications,", Springer-Verlag, (2008).

[7]

E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997).

[8]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges,, Z. Angew. Math. Phys., 40 (1989), 172. doi: 10.1007/BF00944997.

[9]

I. V. Gorelyshev and A. I. Neishtadt, On the adiabatic theory of perturbations for systems with elastic reflections,, J. Appl. Math. Mech. (PMM), 70 (2006), 4. doi: 10.1016/j.jappmathmech.2006.03.015.

[10]

I. V. Gorelyshev and A. I. Neishtadt, Jump in adiabatic invariant at a transition between modes of motion for systems with impacts,, Nonlinearity, 21 (2008), 661. doi: 10.1088/0951-7715/21/4/002.

[11]

B. D. Greenspan and P. Holmes, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations,, in, (1983), 172.

[12]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields,", Springer-Verlag, (1983).

[13]

V. K. Melnikov, On the stability of the center for time-periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.

[14]

J. A. Murdock, "Perturbations: Theory and Methods,", John Wiley & Sons, (1991).

[15]

A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations,", John Wiley & Sons, (1979).

[16]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).

[17]

K. Yagasaki, The Melnikov theory for subharmonics and their bifurcations in forced oscillations,, SIAM J. Appl. Math., 56 (1996), 1720. doi: 10.1137/S0036139995281317.

[18]

K. Yagasaki, Second-order averaging and Melnikov analyses for forced non-linear oscillators,, J. Sound Vibration, 190 (1996), 587. doi: 10.1006/jsvi.1996.0080.

[19]

K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators,, Nonlinear Dynam., 20 (1999), 319. doi: 10.1023/A:1008336402517.

[20]

K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations,, J. Differential Equations, 185 (2002), 1. doi: 10.1006/jdeq.2002.4177.

[21]

K. Yagasaki, Degenerate resonances in forced oscillators,, Discrete Continuous Dynam. Systems - B, 3 (2003), 423. doi: 10.3934/dcdsb.2003.3.423.

[22]

K. Yagasaki, Nonlinear dynamics of vibrating microcantilevers in tapping mode atomic force microscopy,, Phys. Rev. B, 70 (2004).

[23]

K. Yagasaki, Bifurcations and chaos in vibrating microcantilevers of tapping mode atomic force microscopy,, Int. J. Non-Linear Mech., 42 (2007), 658.

[1]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[2]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[3]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019119

[4]

David J. W. Simpson. On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3803-3830. doi: 10.3934/dcds.2014.34.3803

[5]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[6]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[7]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[8]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[9]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[10]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[11]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[12]

Lennard Bakker, Skyler Simmons. Stability of the rhomboidal symmetric-mass orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 1-23. doi: 10.3934/dcds.2015.35.1

[13]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[14]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[15]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[16]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[17]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[18]

Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004

[19]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[20]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]