2013, 33(6): 2369-2387. doi: 10.3934/dcds.2013.33.2369

Unique periodic orbits of a delay differential equation with piecewise linear feedback function

1. 

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged, H-6720, Hungary

Received  January 2012 Revised  April 2012 Published  December 2012

In this paper we study the scalar delay differential equation \linebreak $\dot{x}(t)=-ax(t) + bf(x(t-\tau))$ with feedback function $f(\xi)=\frac{1}{2}(|\xi+1|-|\xi-1|)$ and with real parameters $a>0,\ \tau>0$ and $b\neq 0$, which can model a single neuron or a group of synchronized neurons. We give necessary and sufficient conditions for existence and uniqueness of periodic orbits with prescribed oscillation frequencies. We also investigate the period of the slowly oscillating periodic solution as a function of the delay. Based on the obtained results we state an analogous theorem concerning existence and uniqueness of periodic orbits of a certain type of system of delay differential equations. The proofs are based among others on theory of monotone systems and discrete Lyapunov functionals.
Citation: Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369
References:
[1]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Diff. Eq., 128 (1996), 46. doi: 10.1006/jdeq.1996.0088.

[2]

Y. Chen and J. Wu, Existence and attraction of a phase-locked oscillation in a delayed network of two neurons,, Differential Integral Equations, 14 (2001), 1181.

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex and Nonlinear Analysis,", Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2.

[4]

Á. Garab and T. Krisztin, The period function of a delay differential equation and an application,, Per. Math. Hungar., 63 (2011), 173. doi: 10.1007/s10998-011-8173-2.

[5]

K. Gopalsamy and X.-Z. He, Stability in asymmetric Hopfield nets with transmission delays,, Phys. D, 40 (1994), 344. doi: 10.1016/0167-2789(94)90043-4.

[6]

I. Gyõri and F. Hartung, Stability analysis of a single neuron model with delay,, J. Comput. Appl. Math., 157 (2003), 73. doi: 10.1016/S0377-0427(03)00376-5.

[7]

J. K. Hale, "Theory of Functional Differential Equations,", Springer-Verlag, (1977).

[8]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (2000), 1.

[9]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, Fields Inst. Commun., 29 (2001), 267.

[10]

T. Krisztin and G. Vas, Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback,, J. Dynam. Differential Equations, 23 (2011), 727. doi: 10.1007/s10884-011-9225-2.

[11]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1. doi: 10.1023/A:1009091930589.

[12]

T. Krisztin, H.-O. Walther and J. Wu, "Shape, Smoothness, and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,", Fields Institute Monograph Series, 11 (1999).

[13]

J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions,, J. Diff. Eq., 125 (1996), 385. doi: 10.1006/jdeq.1996.0036.

[14]

J. Mallet-Paret and G. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Diff. Eq., 125 (1996), 441. doi: 10.1006/jdeq.1996.0037.

[15]

G. Vas, Asymptotic constancy and periodicity for a single neuron model with delay,, Nonlinear Anal., 71 (2009), 2268. doi: 10.1016/j.na.2009.01.078.

[16]

J. Wu, "Introduction to Neural Dynamics and Signal Transmission,", de Gruyter, (2001). doi: 10.1515/9783110879971.

[17]

T. Yi, Y. Chen and J. Wu, Periodic solutions and the global attractor in a system of delay differential equations,, SIAM J. Math. Anal., 42 (2010), 24. doi: 10.1137/080725283.

show all references

References:
[1]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Diff. Eq., 128 (1996), 46. doi: 10.1006/jdeq.1996.0088.

[2]

Y. Chen and J. Wu, Existence and attraction of a phase-locked oscillation in a delayed network of two neurons,, Differential Integral Equations, 14 (2001), 1181.

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex and Nonlinear Analysis,", Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2.

[4]

Á. Garab and T. Krisztin, The period function of a delay differential equation and an application,, Per. Math. Hungar., 63 (2011), 173. doi: 10.1007/s10998-011-8173-2.

[5]

K. Gopalsamy and X.-Z. He, Stability in asymmetric Hopfield nets with transmission delays,, Phys. D, 40 (1994), 344. doi: 10.1016/0167-2789(94)90043-4.

[6]

I. Gyõri and F. Hartung, Stability analysis of a single neuron model with delay,, J. Comput. Appl. Math., 157 (2003), 73. doi: 10.1016/S0377-0427(03)00376-5.

[7]

J. K. Hale, "Theory of Functional Differential Equations,", Springer-Verlag, (1977).

[8]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (2000), 1.

[9]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, Fields Inst. Commun., 29 (2001), 267.

[10]

T. Krisztin and G. Vas, Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback,, J. Dynam. Differential Equations, 23 (2011), 727. doi: 10.1007/s10884-011-9225-2.

[11]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1. doi: 10.1023/A:1009091930589.

[12]

T. Krisztin, H.-O. Walther and J. Wu, "Shape, Smoothness, and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,", Fields Institute Monograph Series, 11 (1999).

[13]

J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions,, J. Diff. Eq., 125 (1996), 385. doi: 10.1006/jdeq.1996.0036.

[14]

J. Mallet-Paret and G. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Diff. Eq., 125 (1996), 441. doi: 10.1006/jdeq.1996.0037.

[15]

G. Vas, Asymptotic constancy and periodicity for a single neuron model with delay,, Nonlinear Anal., 71 (2009), 2268. doi: 10.1016/j.na.2009.01.078.

[16]

J. Wu, "Introduction to Neural Dynamics and Signal Transmission,", de Gruyter, (2001). doi: 10.1515/9783110879971.

[17]

T. Yi, Y. Chen and J. Wu, Periodic solutions and the global attractor in a system of delay differential equations,, SIAM J. Math. Anal., 42 (2010), 24. doi: 10.1137/080725283.

[1]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[2]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Structure of a class of traveling waves in delayed cellular neural networks. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 339-359. doi: 10.3934/dcds.2005.13.339

[3]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[4]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[5]

Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864

[6]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[7]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[8]

Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181

[9]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[10]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[11]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[12]

Suh-Yuh Yang, Cheng-Hsiung Hsu. Existence of monotonic traveling waves in modified RTD-based cellular neural networks. Conference Publications, 2005, 2005 (Special) : 930-939. doi: 10.3934/proc.2005.2005.930

[13]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[14]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

[15]

Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233-256. doi: 10.3934/mbe.2014.11.233

[16]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[17]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[18]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[19]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic & Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

[20]

Michele La Rocca, Cira Perna. Designing neural networks for modeling biological data: A statistical perspective. Mathematical Biosciences & Engineering, 2014, 11 (2) : 331-342. doi: 10.3934/mbe.2014.11.331

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]