2013, 33(6): 2389-2401. doi: 10.3934/dcds.2013.33.2389

On the stability of standing waves of Klein-Gordon equations in a semiclassical regime

1. 

Dipartimento di Matematica Applicata, Università di Pisa, Via F. Buonarroti 1/c, 56127 Pisa, Italy

2. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

3. 

Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy

Received  January 2012 Revised  September 2012 Published  December 2012

We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
Citation: Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389
References:
[1]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth,, Comm. Partial Differential Equations, 36 (2011), 797. doi: 10.1080/03605302.2010.534684.

[2]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Rational Mech. Anal., 140 (1997), 285. doi: 10.1007/s002050050067.

[3]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$,", 240 of Progress in Mathematics, 240 (2006).

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations,, Topol. Methods Nonlinear Anal., 35 (2010), 33.

[5]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential,, Comm. Partial Differential Equations, 18 (1993), 1365. doi: 10.1080/03605309308820977.

[6]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, Rev. Math. Phys., 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[7]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires,, C. R. Acad. Sci. Paris Sé. I Math., 293 (1981), 489.

[8]

F. A. Berezin and M. A. Shubin, "The Schrödinger Equation,", 66 of Mathematics and its Applications (Soviet Series), 66 (1991). doi: 10.1007/978-94-011-3154-4.

[9]

T. Cazenave, "Semilinear Schrödinger Equations,", New York University - Courant Institute, (2003).

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.

[11]

S. Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\R^{3+1}$,, Comm. Partial Differential Equations, 24 (1999), 851. doi: 10.1080/03605309908821449.

[12]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[13]

E. Deumens, The Klein-Gordon-Maxwell nonlinear systems of equations,, Phys. D, 18 (1986), 371. doi: 10.1016/0167-2789(86)90201-0.

[14]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1982).

[15]

M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9.

[16]

______, Stability theory of solitary waves in the presence of symmetry II,, J. Funct. Anal., 94 (1990), 308.

[17]

I. Ianni and S. Le Coz, Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation,, Adv. Differential Equations, 14 (2009), 717.

[18]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations,, Adv. Differential Equations, 11 (2006), 813.

[19]

______, Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments,, Trans. Amer. Math. Soc., 361 (2009), 5401.

[20]

M. Keel, T. Roy and T. Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm,, Discrete Contin. Dyn. Syst., 30 (2011), 573. doi: 10.3934/dcds.2011.30.573.

[21]

S. Le Coz, Standing waves in nonlinear Schrödinger equations,, in, (2009), 151.

[22]

S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential,, Phys. D, 237 (2008), 1103. doi: 10.1016/j.physd.2007.12.004.

[23]

T.-C. Lin and J. Wei, Orbital stability of bound states of semiclassical nonlinear Schrödinger equations with critical nonlinearity,, SIAM J. Math. Anal., 40 (2008), 365. doi: 10.1137/070683842.

[24]

Y. Liu, M. Ohta and G. Todorova, Instabilité forte d'ondes solitaires pour des équations de Klein-Gordon non linéaires et des équations généralisées de Boussinesq,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 539. doi: 10.1016/j.anihpc.2006.03.005.

[25]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law,, Rev. Math. Phys., 21 (2009), 459. doi: 10.1142/S0129055X09003669.

[26]

Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schr\"odinger equations with potentials,, Comm. Math. Phys., 121 (1989), 11.

[27]

M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equations,, Discrete Contin. Dyn. Syst., 12 (2005), 315. doi: 10.1137/050643015.

[28]

______, Instability of standing waves for nonlinear Klein-Gordon equation and related system,, in, 26 (2006), 189.

[29]

______, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system,, SIAM J. Math. Anal., 38 (2007), 1912.

[30]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701. doi: 10.2307/2000308.

[31]

J. Shatah and W. A. Strauss, Instability of nonlinear bound states,, Comm. Math. Phys., 100 (1985), 173.

[32]

C. D. Sogge, Lectures on non-linear wave equations,, International Press, (2008).

[33]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329. doi: 10.1007/s00032-008-0089-9.

[34]

D. M. A. Stuart, Modulational approach to stability of non-topological solitons in semilinear wave equations,, J. Math. Pures Appl. (9), 80 (2001), 51. doi: 10.1016/S0021-7824(00)01189-2.

[35]

T. Tao, Why are solitons stable?,, Bull. Amer. Math. Soc., 46 (2009), 1. doi: 10.1090/S0273-0979-08-01228-7.

[36]

G. Vaira, Semiclassical states for the nonlinear Klein-Gordon-Maxwell system,, J. Pure Appl. Math. Adv. Appl., 4 (2010), 59.

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 567.

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034.

[39]

Y. Yu, Vortex dynamics for the nonlinear Maxwell-Klein-Gordon equation,, Arch. Ration. Mech. Anal., 201 (2011), 743. doi: 10.1007/s00205-011-0422-2.

show all references

References:
[1]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth,, Comm. Partial Differential Equations, 36 (2011), 797. doi: 10.1080/03605302.2010.534684.

[2]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, Arch. Rational Mech. Anal., 140 (1997), 285. doi: 10.1007/s002050050067.

[3]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$,", 240 of Progress in Mathematics, 240 (2006).

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations,, Topol. Methods Nonlinear Anal., 35 (2010), 33.

[5]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential,, Comm. Partial Differential Equations, 18 (1993), 1365. doi: 10.1080/03605309308820977.

[6]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, Rev. Math. Phys., 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[7]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires,, C. R. Acad. Sci. Paris Sé. I Math., 293 (1981), 489.

[8]

F. A. Berezin and M. A. Shubin, "The Schrödinger Equation,", 66 of Mathematics and its Applications (Soviet Series), 66 (1991). doi: 10.1007/978-94-011-3154-4.

[9]

T. Cazenave, "Semilinear Schrödinger Equations,", New York University - Courant Institute, (2003).

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.

[11]

S. Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\R^{3+1}$,, Comm. Partial Differential Equations, 24 (1999), 851. doi: 10.1080/03605309908821449.

[12]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[13]

E. Deumens, The Klein-Gordon-Maxwell nonlinear systems of equations,, Phys. D, 18 (1986), 371. doi: 10.1016/0167-2789(86)90201-0.

[14]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1982).

[15]

M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9.

[16]

______, Stability theory of solitary waves in the presence of symmetry II,, J. Funct. Anal., 94 (1990), 308.

[17]

I. Ianni and S. Le Coz, Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation,, Adv. Differential Equations, 14 (2009), 717.

[18]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations,, Adv. Differential Equations, 11 (2006), 813.

[19]

______, Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments,, Trans. Amer. Math. Soc., 361 (2009), 5401.

[20]

M. Keel, T. Roy and T. Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm,, Discrete Contin. Dyn. Syst., 30 (2011), 573. doi: 10.3934/dcds.2011.30.573.

[21]

S. Le Coz, Standing waves in nonlinear Schrödinger equations,, in, (2009), 151.

[22]

S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential,, Phys. D, 237 (2008), 1103. doi: 10.1016/j.physd.2007.12.004.

[23]

T.-C. Lin and J. Wei, Orbital stability of bound states of semiclassical nonlinear Schrödinger equations with critical nonlinearity,, SIAM J. Math. Anal., 40 (2008), 365. doi: 10.1137/070683842.

[24]

Y. Liu, M. Ohta and G. Todorova, Instabilité forte d'ondes solitaires pour des équations de Klein-Gordon non linéaires et des équations généralisées de Boussinesq,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 539. doi: 10.1016/j.anihpc.2006.03.005.

[25]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law,, Rev. Math. Phys., 21 (2009), 459. doi: 10.1142/S0129055X09003669.

[26]

Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schr\"odinger equations with potentials,, Comm. Math. Phys., 121 (1989), 11.

[27]

M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equations,, Discrete Contin. Dyn. Syst., 12 (2005), 315. doi: 10.1137/050643015.

[28]

______, Instability of standing waves for nonlinear Klein-Gordon equation and related system,, in, 26 (2006), 189.

[29]

______, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system,, SIAM J. Math. Anal., 38 (2007), 1912.

[30]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701. doi: 10.2307/2000308.

[31]

J. Shatah and W. A. Strauss, Instability of nonlinear bound states,, Comm. Math. Phys., 100 (1985), 173.

[32]

C. D. Sogge, Lectures on non-linear wave equations,, International Press, (2008).

[33]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329. doi: 10.1007/s00032-008-0089-9.

[34]

D. M. A. Stuart, Modulational approach to stability of non-topological solitons in semilinear wave equations,, J. Math. Pures Appl. (9), 80 (2001), 51. doi: 10.1016/S0021-7824(00)01189-2.

[35]

T. Tao, Why are solitons stable?,, Bull. Amer. Math. Soc., 46 (2009), 1. doi: 10.1090/S0273-0979-08-01228-7.

[36]

G. Vaira, Semiclassical states for the nonlinear Klein-Gordon-Maxwell system,, J. Pure Appl. Math. Adv. Appl., 4 (2010), 59.

[37]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 567.

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034.

[39]

Y. Yu, Vortex dynamics for the nonlinear Maxwell-Klein-Gordon equation,, Arch. Ration. Mech. Anal., 201 (2011), 743. doi: 10.1007/s00205-011-0422-2.

[1]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[2]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[3]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[4]

Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889

[5]

Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525

[6]

Baoxiang Wang. Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 753-763. doi: 10.3934/dcds.1999.5.753

[7]

Zaihui Gan. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1541-1554. doi: 10.3934/cpaa.2009.8.1541

[8]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[9]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[10]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017215

[11]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

[12]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[13]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[14]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[15]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[16]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[17]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[18]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

[19]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[20]

Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic & Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]