| Citation: |
| [1] |
F. Abdenur and L. Diaz, Pseudo-orbit shadowing in the $C^1$ topology, Discrete Contin. Dyn. Syst., 7 (2003), 223-245. |
| [2] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp. |
| [3] |
D. Bohnet and Ch. Bonatti, Partially hyperbolic diffeomorphisms with uniformly center foliation: the quotient dynamics, preprint arXiv:1210.2835. |
| [4] |
Ch. Bonatti, L. J. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," Springer, Berlin, 2004. |
| [5] |
Ch. Bonatti, L. Diaz and G. Turcat, There is no shadowing lemma for partially hyperbolic dynamics, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 587-592.doi: 10.1016/S0764-4442(00)00215-9. |
| [6] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes Math., 470, Springer, Berlin, 1975. |
| [7] |
M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems, 23 (2003), 395-401.doi: 10.1017/S0143385702001499. |
| [8] |
K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete and Continuous Dynamical Systems, 22 (2008), 89-100.doi: 10.3934/dcds.2008.22.89. |
| [9] |
N. Gourmelon, Adapted metric for dominated splitting, Ergod. Theory Dyn. Syst., 27 (2007), 1839-1849.doi: 10.1017/S0143385707000272. |
| [10] |
F. Rodriguez-Hertz, M. A. Rodriguez-Hertz and R. Ures, A survey of partially hyperbolic dynamics, Fields Institute Communications, Partially Hyperbolic Dynamics, Laminations and Teichmuller Flow, 51 (2007), 35-88. |
| [11] |
M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg, 1977. |
| [12] |
Huyi Hu, Yunhua Zhou and Yujun Zhu, Quasi-Shadowing for Partially Hyperbolic Diffeomorphisms, preprint, arXiv:1210.4988. |
| [13] |
A. Morimoto, The method of pseudo-orbit tracing and stability of dynamical systems, Sem. Note, 39 (1979), Tokyo Univ. |
| [14] |
K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications," Kluwer, Dordrecht, 2000. |
| [15] |
S. Yu. Pilyugin, "Shadowing in Dynamical Systems," Lecture Notes in Math., 1706, Springer, Berlin, 1999. |
| [16] |
S. Yu. Pilyugin, Variational shadowing, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 733-737.doi: 10.3934/dcdsb.2010.14.733. |
| [17] |
S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing imply structural stability, Nonlinearity, 23 (2010), 2509-2515.doi: 10.1088/0951-7715/23/10/009. |
| [18] |
C. C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, revisited, J. of Modern Dynamics, 6 (2012), 79-120.doi: 10.3934/jmd.2012.6.79. |
| [19] |
C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mount. J. Math., 7 (1977), 425-437. |
| [20] |
K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms of closed manifolds, Osaka J. Math., 31 (1994), 373-386. |
| [21] |
K. Sawada, Extended f-orbits are approximated by orbits, Nagoya Math. J., 79 (1980), 33-45. |
| [22] |
J. Schauder, Der fixpunktsatz in funktionalraumen, Stud. Math., 2 (1930), 171-180. |
| [23] |
S. B. Tikhomirov, Hölder shadowing on finite intervals, preprint, arXiv:1106.4053. |