• Previous Article
    Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations
  • DCDS Home
  • This Issue
  • Next Article
    Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities
August  2013, 33(8): 3583-3597. doi: 10.3934/dcds.2013.33.3583

On the moments of solutions to linear parabolic equations involving the biharmonic operator

1. 

Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32, Milano, 20133

Received  June 2012 Revised  August 2012 Published  January 2013

We consider the solutions to Cauchy problems for the parabolic equation $u_\tau +\Delta^2u=0$ in $\mathbb{R}_+\times\mathbb{R}^n$, with fast decay initial data. We study the behavior of their moments. This enables us to give a more precise description of the sign-changing behavior of solutions corresponding to positive initial data.
Citation: Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583
References:
[1]

G. E. Andrews, R. Askey and R. Roy, "Special Functions,", 71 of Encyclopedia of Mathematics and its Applications, 71 (1999). Google Scholar

[2]

G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients,, J. Diff. Eq., 174 (2001), 442. doi: 10.1006/jdeq.2000.3940. Google Scholar

[3]

G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators,, J. Operator Theory, 36 (1996), 179. Google Scholar

[4]

E. Berchio, On the sign of solutions to some linear parabolic biharmonic equations,, Adv. Diff. Eq., 13 (2008), 959. Google Scholar

[5]

G. Caristi and E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data,, J. Math. Anal. Appl., 279 (2003), 710. doi: 10.1016/S0022-247X(03)00062-3. Google Scholar

[6]

J. W. Cholewa and A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $\mathbbR^N$,, Nonlin. Anal., 75 (2012), 194. doi: 10.1016/j.na.2011.08.022. Google Scholar

[7]

J. W. Cholewa and A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equations in $\mathbbR^N$,, Nonlin. Anal., 75 (2012), 3510. doi: 10.1016/j.na.2012.01.011. Google Scholar

[8]

J. W. Cholewa and A. Rodriguez-Bernal, On the Cahn-Hilliard equation in $H^1(\mathbbR^N)$,, to appear in J. Diff. Eq.., (). Google Scholar

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the necessary conditions of global existence to a quasilinear inequality in the half-space,, C. R. Acad. Sci. Paris, 330 (2000), 93. doi: 10.1016/S0764-4442(00)00124-5. Google Scholar

[10]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range,, C. R. Acad. Sci. Paris, 335 (2002), 805. doi: 10.1016/S1631-073X(02)02567-0. Google Scholar

[11]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, Adv. Diff. Eq., 9 (2004), 1009. Google Scholar

[12]

S. D. Eidelman, Parabolicheskie sistemy,, Izdat., (1964). Google Scholar

[13]

A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic parabolic equations,, Disc. Cont. Dynam. Syst., 21 (2008), 1129. doi: 10.3934/dcds.2008.21.1129. Google Scholar

[14]

V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach,, Nonlin. Diff. Eq. Appl., 5 (2009), 597. doi: 10.1007/s00030-009-0025-x. Google Scholar

[15]

V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation,, Nonlinearity, 18 (2005), 717. doi: 10.1088/0951-7715/18/2/014. Google Scholar

[16]

V. A. Galaktionov and S. I. Pohožaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators,, Indiana Univ. Math. J., 51 (2002), 1321. doi: 10.1512/iumj.2002.51.2131. Google Scholar

[17]

V. A. Galaktionov and J. L. Vázquez, A stability technique for evolution partial differential equations. A dynamical systems approach,, Progress in Nonlinear Differential Equations and their Applications 56, 56 (2004). doi: 10.1007/978-1-4612-2050-3. Google Scholar

[18]

V. A. Galaktionov and J. F. Williams, On very singular similarity solutions of a higher-order semilinear parabolic equation,, Nonlinearity, 17 (2004), 1075. doi: 10.1088/0951-7715/17/3/017. Google Scholar

[19]

F. Gazzola and H.-Ch. Grunau, Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay,, Calc. Var., 30 (2007), 389. doi: 10.1007/s00526-007-0096-7. Google Scholar

[20]

F. Gazzola and H.-Ch. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbbR^n$,, Disc. Cont. Dynam. Syst. S., 1 (2008), 83. Google Scholar

[21]

F. Gazzola and H.-Ch. Grunau, Some new properties of biharmonic heat kernels,, Nonlinear Analysis, 70 (2009), 2965. doi: 10.1016/j.na.2008.12.039. Google Scholar

[22]

X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to ${\partial u}/{\partial t}=-(-\Delta)^m u$,, Proc. Roy. Soc. London A., 441 (1993), 423. doi: 10.1098/rspa.1993.0071. Google Scholar

[23]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

show all references

References:
[1]

G. E. Andrews, R. Askey and R. Roy, "Special Functions,", 71 of Encyclopedia of Mathematics and its Applications, 71 (1999). Google Scholar

[2]

G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients,, J. Diff. Eq., 174 (2001), 442. doi: 10.1006/jdeq.2000.3940. Google Scholar

[3]

G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators,, J. Operator Theory, 36 (1996), 179. Google Scholar

[4]

E. Berchio, On the sign of solutions to some linear parabolic biharmonic equations,, Adv. Diff. Eq., 13 (2008), 959. Google Scholar

[5]

G. Caristi and E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data,, J. Math. Anal. Appl., 279 (2003), 710. doi: 10.1016/S0022-247X(03)00062-3. Google Scholar

[6]

J. W. Cholewa and A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $\mathbbR^N$,, Nonlin. Anal., 75 (2012), 194. doi: 10.1016/j.na.2011.08.022. Google Scholar

[7]

J. W. Cholewa and A. Rodriguez-Bernal, Dissipative mechanism of a semilinear higher order parabolic equations in $\mathbbR^N$,, Nonlin. Anal., 75 (2012), 3510. doi: 10.1016/j.na.2012.01.011. Google Scholar

[8]

J. W. Cholewa and A. Rodriguez-Bernal, On the Cahn-Hilliard equation in $H^1(\mathbbR^N)$,, to appear in J. Diff. Eq.., (). Google Scholar

[9]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the necessary conditions of global existence to a quasilinear inequality in the half-space,, C. R. Acad. Sci. Paris, 330 (2000), 93. doi: 10.1016/S0764-4442(00)00124-5. Google Scholar

[10]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range,, C. R. Acad. Sci. Paris, 335 (2002), 805. doi: 10.1016/S1631-073X(02)02567-0. Google Scholar

[11]

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohožaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range,, Adv. Diff. Eq., 9 (2004), 1009. Google Scholar

[12]

S. D. Eidelman, Parabolicheskie sistemy,, Izdat., (1964). Google Scholar

[13]

A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic parabolic equations,, Disc. Cont. Dynam. Syst., 21 (2008), 1129. doi: 10.3934/dcds.2008.21.1129. Google Scholar

[14]

V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach,, Nonlin. Diff. Eq. Appl., 5 (2009), 597. doi: 10.1007/s00030-009-0025-x. Google Scholar

[15]

V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation,, Nonlinearity, 18 (2005), 717. doi: 10.1088/0951-7715/18/2/014. Google Scholar

[16]

V. A. Galaktionov and S. I. Pohožaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators,, Indiana Univ. Math. J., 51 (2002), 1321. doi: 10.1512/iumj.2002.51.2131. Google Scholar

[17]

V. A. Galaktionov and J. L. Vázquez, A stability technique for evolution partial differential equations. A dynamical systems approach,, Progress in Nonlinear Differential Equations and their Applications 56, 56 (2004). doi: 10.1007/978-1-4612-2050-3. Google Scholar

[18]

V. A. Galaktionov and J. F. Williams, On very singular similarity solutions of a higher-order semilinear parabolic equation,, Nonlinearity, 17 (2004), 1075. doi: 10.1088/0951-7715/17/3/017. Google Scholar

[19]

F. Gazzola and H.-Ch. Grunau, Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay,, Calc. Var., 30 (2007), 389. doi: 10.1007/s00526-007-0096-7. Google Scholar

[20]

F. Gazzola and H.-Ch. Grunau, Eventual local positivity for a biharmonic heat equation in $\mathbbR^n$,, Disc. Cont. Dynam. Syst. S., 1 (2008), 83. Google Scholar

[21]

F. Gazzola and H.-Ch. Grunau, Some new properties of biharmonic heat kernels,, Nonlinear Analysis, 70 (2009), 2965. doi: 10.1016/j.na.2008.12.039. Google Scholar

[22]

X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to ${\partial u}/{\partial t}=-(-\Delta)^m u$,, Proc. Roy. Soc. London A., 441 (1993), 423. doi: 10.1098/rspa.1993.0071. Google Scholar

[23]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Differential Equations, 18 (1993), 125. doi: 10.1080/03605309308820923. Google Scholar

[1]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[2]

John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349

[3]

Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393

[4]

Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure & Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519

[5]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[6]

Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189

[7]

Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667

[8]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[9]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[10]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[11]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[12]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[13]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[14]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[15]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[16]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[17]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[18]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[19]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[20]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]