\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator

Abstract / Introduction Related Papers Cited by
  • This article is concerned with conjugacy problems arising in the homeomorphisms group, Hom($F$), of unbounded subsets $F$ of normed vector spaces $E$. Given two homeomorphisms $f$ and $g$ in Hom($F$), it is shown how the existence of a conjugacy may be related to the existence of a common generalized eigenfunction of the associated Koopman operators. This common eigenfunction serves to build a topology on Hom($F$), where the conjugacy is obtained as limit of a sequence generated by the conjugacy operator, when this limit exists. The main conjugacy theorem is presented in a class of generalized Lipeomorphisms.
    Mathematics Subject Classification: 20E45, 37C15, 39B62, 39B72, 47A75, 47B33, 54A20, 54E15, 54E25, 57S05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. H. Abel, Détermination d'une fonction au moyen d'une équation qui ne contient qu'une seule variable, in "Oeuvres Complètes," 2 (1839), 246-248; "Oeuvres Complètes," 2, Christiania, Oslo, (1881), 36-39.

    [2]

    C. Aliprantis and K. Border, "Infinite Dimensional Analysis: A Hitchhiker's Guide," Springer-Verlag, New York, 2007.

    [3]

    R. Arens, Topologies for homeomorphism groups, Amer J. Math., 68 (1946), 593-610.

    [4]

    V. Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.doi: 10.1142/9789812813633.

    [5]

    J. Banaś, A. Hajnosz and S. Wędrychowicz, On existence and asymptotic behavior of solutions of some functional equations, Funkcialaj Ekvacioj, 25 (1982), 257-267.

    [6]

    A. Banyaga, R. de la Llave and C. E. Wayne, Cohomology equations and commutators of germs of contact diffeomorphisms, Trans. Amer. Math. Society, 312 (1989), 755-778.doi: 10.2307/2001010.

    [7]

    A. Banyaga, R. de la Llave and C. E. Wayne, Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem, J. Geom. Anal., 6 (1996), 613-649.doi: 10.1007/BF02921624.

    [8]

    G. Belitskii and Yu. Lyubich, The Abel equation and total solvability of linear functional equations, Studia Mathematica, 127 (1998), 81-97.

    [9]

    G. Belitskii and Yu. Lyubich, The real-analytic solutions of the Abel functional equation, Studia Mathematica, 134 (1999), 135-141.

    [10]

    G. Belitskii and V. Tkachenko, Functional equations in real-analytic functions, Studia Mathematica, 143 (2000), 153-174.

    [11]

    P. S. Bourdon and J. H. Shapiro, Mean growth of Koenigs eigenfunctions, J. Amer. Math. Soc., 10 (1997), 299-325.doi: 10.1090/S0894-0347-97-00224-5.

    [12]

    J. Caugran and H. J. Schwartz, Spectra of compact composition operators, Proc. Amer. Math. Soc., 51 (1975), 127-130.

    [13]

    M. Chaperon, "Géométrie Différentielle et Singularités de Systèmes Dynamiques," Astérisque, 138-139, (1986), 440 pp.

    [14]

    M. D. Chekroun, M. Ghil, J. Roux and F. Varadi, Averaging of time-periodic systems without a small parameter, Disc. and Cont. Dyn. Syst. A, 14 (2006), 753-782.doi: 10.3934/dcds.2006.14.753.

    [15]

    D. D. Clahane, Spectra of compact composition operators over bounded symmetric domains, Integr. Equ. Oper. Theory, 51 (2005), 41-56.doi: 10.1007/s00020-003-1250-z.

    [16]

    N. D. Cong, "Topological Dynamics of Random Dynamical Systems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1997.

    [17]

    I. Cornfeld, S. Fomin and Ya. Sinaĭ, "Ergodic Theory," Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4615-6927-5.

    [18]

    C. C. Cowen and B. D. MacCluer, "Composition Operators on Spaces of Analytic Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.

    [19]

    R. de la Llave, J. Marko and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2), 123 (1986), 537-611.doi: 10.2307/1971334.

    [20]

    M. A. Denjoy, Sur l'itération de fonctions analytiques, C. R. Acad. Sci. Paris, 182 (1926), 255-257.

    [21]

    J. Dieudonné, "Éléments d'Analyse," Tome 1, Gauthiers-Villars, Paris, 1968.

    [22]

    J. Ding, The point spectrum of Perron-Frobenius and Koopman operators, Proc. Amer. Math. Soc., 126 (1998), 1355-1361.doi: 10.1090/S0002-9939-98-04188-4.

    [23]

    G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems, J. Dynam. Control Systems, 5 (1999), 173-226.doi: 10.1023/A:1021726902801.

    [24]

    R. P. Gosselin, A maximal theorem for subadditive functions, Acta Mathematica, 112 (1964), 163-180.

    [25]

    M. W. Hirsch, "Differential Topology," Graduate Texts in Mathematics, 33, Springer-Verlag, New York-Heidelberg, 1976.

    [26]

    M. C. Irwin, "Smooth Dynamical Systems," Reprint of the 1980 original, With a foreword by R. S. MacKay, Advances Series in Nonlinear Dynamics, 17, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.doi: 10.1142/9789812810120.

    [27]

    G. Julia, Sur une classe d'équations fonctionnelles, Annales Sci. de l'École Norm. Supérieure, Série 3, 40 (1923), 97-150.

    [28]

    R. R. Kallman, Uniqueness results for homeomorphism groups, Trans. Amer. Math. Soc., 295 (1986), 389-396.doi: 10.2307/2000162.

    [29]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," With a supplementary chapter by Anatole Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [30]

    J. L. Kelley, "General Topology," Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975.

    [31]

    G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Annales de l'École Normale Supérieure, 1 (1884), 3-41.

    [32]

    B. Koopman and J. von Neumann, Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. USA, 18 (1932), 255-266.

    [33]

    J. Kotus, M. Krych and Z. Nitecki, Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc., 37 (1982), v+108 pp.

    [34]

    M. Kuczma, "Functional Equations in a Single Variable," Monografir Mat., 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.

    [35]

    M. Kuczma, B. Choczewski and R. Ger, "Iterative Functional Equations," Encyclopedia of Mathematics and its Applications, 32, Cambridge Univ. Press, Cambridge, 1990.doi: 10.1017/CBO9781139086639.

    [36]

    A. Lasota and M. C. Mackey, "Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics," Second edition, Applied Mathematical Sciences, 97, Springer-Verlag, New York, 1994.

    [37]

    A. Livshitz, Homology properties of $Y$-systems, Math. Notes USSR Acad. Sci., 10 (1971), 758-763.

    [38]

    A. Livshitz, Cohomology of dynamical systems, Math. USSR-Izv, 6 (1972), 1278-1301.

    [39]

    R. Lozi, Un attracteur étrange (?) du type attracteur de Hénon, J. Phys. (Paris), 39 (1978), 69-70.

    [40]

    I. Mezić and A. Banaszuk, Comparison of systems with complex behaviour, Physica D, 197 (2004), 101-133.doi: 10.1016/j.physd.2004.06.015.

    [41]

    M. Misiurewicz, Strange attractors for the Lozi mappings, in "Nonlinear Dynamics" (Internat. Conf., New York, 1979), Ann. New York Acad. Sci., 357, New York Acad. Sci., New York, (1980), 348-358.

    [42]

    J. Palis, A global perspective for non-conservative dynamics, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 22 (2005), 485-507.doi: 10.1016/j.anihpc.2005.01.001.

    [43]

    R. A. Rosenbaum, Sub-additive functions, Duke Math. J., 17 (1950), 227-247.

    [44]

    J. Ren and X. Zhang, Topologies on homeomorphism spaces of certain metric spaces, J. Math. Anal. Appl., 316 (2006), 32-36.doi: 10.1016/j.jmaa.2005.05.019.

    [45]

    R. Roussarie and J. Roux, "Des Équations Différentielles aux Systèmes Dynamiques," Tomes I et II, EDP Sciences, 2012.

    [46]

    H. H. Schaefer, "Topological Vector Spaces," Second edition, Graduate Texts in Mathematics, 3, Springer-Verlag, 1999.

    [47]

    E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann., 2 (1870), 317-365.doi: 10.1007/BF01444024.

    [48]

    E. Seneta, Functional equations and the Galton-Watson process, Advances in Applied Probability, 1 (1969), 1-42.

    [49]

    J. H. Shapiro, W. Smith and D. A. Stegenga, Geometric models and compactness of composition operators, J. Functional Analysis, 127 (1995), 21-62.doi: 10.1006/jfan.1995.1002.

    [50]

    J. H. Shapiro, Composition operators and Schröder's functional equation, in "Studies on Composition Operators" (Laramie, WY, 1996), Contemporary Mathematics, 213, Amer. Math. Soc., Providence, RI, (1998), 213-228.doi: 10.1090/conm/213/02861.

    [51]

    S. Smale, Dynamical systems and the topological conjugacy problem for diffeomorphisms, in "Proceedings of the International Congress of Mathematicians" (ed. V. Stenström) (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, (1963), 490-496.

    [52]

    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.

    [53]

    J. Walorski, On the continuous smooth solutions of the Schröder equation in normed spaces, Integr. Equ. Oper. Theory, 60 (2008), 597-600.doi: 10.1007/s00020-007-1550-9.

    [54]

    J.-C. Yoccoz, Théorème de Siegel, nombre de Bruno et polynômes quadratiques, Astérisque, 231 (1995), 3-88.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return