2013, 33(9): 4239-4269. doi: 10.3934/dcds.2013.33.4239

Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts

1. 

IRMAR, UMR CNRS 6625, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex

2. 

IRMAR, CNRS UMR 6625, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Received  May 2011 Revised  July 2011 Published  March 2013

Let $(X, \cal B, \nu)$ be a probability space and let $\Gamma$ be a countable group of $\nu$-preserving invertible maps of $X$ into itself. To a probability measure $\mu$ on $\Gamma$ corresponds a random walk on $X$ with Markov operator $P$ given by $P\psi(x) = \sum_{a} \psi(ax) \, \mu(a)$. We consider various examples of ergodic $\Gamma$-actions and random walks and their extensions by a vector space: groups of automorphisms or affine transformations on compact nilmanifolds, random walks in random scenery on non amenable groups, translations on homogeneous spaces of simple Lie groups, random walks on motion groups. A powerful tool in this study is the spectral gap property for the operator $P$ when it holds. We use it to obtain limit theorems, recurrence/transience property and ergodicity for random walks on non compact extensions of the corresponding dynamical systems.
Citation: Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239
References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs, 50 (1997).

[2]

J. Bourgain and A. Gamburd, Spectral gaps in $ SU(d)$,, C. R. Math. Acad. Sci. Paris, 348 (2010), 609. doi: 10.1016/j.crma.2010.04.024.

[3]

B. Bekka, P. de la Harpe and A. Valette, "Kazhdan's Property (T),", New Mathematical Monographs, 11 (2008).

[4]

B. Bekka and J.-R. Heu, Random products of automorphisms of Heisenberg nilmanifolds and Weil's representation,, Ergodic Theory Dynam. Systems, 31 (2011), 1277. doi: 10.1017/S014338571000043X.

[5]

B. Bekka and Y. Guivarc'h, On the spectral theory of groups of affine transformations on compact nilmanifolds,, , ().

[6]

L. Breiman, "Probability,", Addison-Wesley Publishing Company, (1968).

[7]

B. M. Brown, Martingale central limit theorems,, Ann. Math. Statist., 42 (1971), 59.

[8]

J.-P. Conze, Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications,, Ergodic Theory and Dynam. Systems, 19 (1999), 1233. doi: 10.1017/S0143385799141701.

[9]

J.-P. Conze and Y. Guivarc'h, Remarques sur la distalité dans les espaces vectoriels,, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 1083.

[10]

J. Dixmier and W. G. Lister, Derivations of nilpotent Lie algebras,, Proc. Amer. Math. Soc., 8 (1957), 155.

[11]

A. Furman and Ye. Shalom, Sharp ergodic theorems for group actions and strong ergodicity,, Ergodic Theory Dynam. Systems, 19 (1999), 1037. doi: 10.1017/S0143385799133881.

[12]

A. Gamburd, D. Jakobson and P. Sarnak, Spectra of elements in the group ring of $ SU(2)$,, J. Eur. Math. Soc. (JEMS), 1 (1999), 51. doi: 10.1007/PL00011157.

[13]

M. I. Gordin and B. A. Lifšic, Central limit theorem for stationary Markov processes,, (Russian) Dokl. Akad. Nauk SSSR, 239 (1978), 766.

[14]

Y. Guivarc'h, Equirartition dans les espaces homogènes,, (French) in, (1976), 131.

[15]

Y. Guivarc'h, Limit theorems for random walks and products of random matrices,, in, (2006), 255.

[16]

Y. Guivarc'h and J. Hardy, Théorémes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov,, Ann. Inst. H. Poincar Probab. Statist., 24 (1988), 73.

[17]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms,, Ergodic Theory Dynam. Systems, 24 (2004), 767. doi: 10.1017/S0143385703000440.

[18]

Y. Guivarc'h and C. R. E. Raja, Recurrence and ergodicity of random walks on locally compact groups and on homogeneous spaces,, Ergodic Theory and Dynam. Systems, 32 (2012), 1313. doi: 10.1017/S0143385711000149.

[19]

V. F. R. Jones and K. Schmidt, Asymptotically invariant sequences and approximate finiteness,, Amer. J. Math., 109 (1987), 91. doi: 10.2307/2374553.

[20]

V. Kaimanovich, The Poisson boundary of covering Markov operators,, Israel J. Math., 89 (1995), 77. doi: 10.1007/BF02808195.

[21]

S. A. Kalikow, $T,T^{-1}$ transformation is not loosely Bernoulli,, Ann. of Math. (2), 115 (1982), 393. doi: 10.2307/1971397.

[22]

D. A. Kazhdan, Uniform distribution on a plane,, (Russian) Trudy Moskov. Mat. Ob., 14 (1965), 299.

[23]

H. Kesten, Symmetric random walks on groups,, Trans. Amer. Math. Soc., 92 (1959), 336.

[24]

H. Kesten and F. Spitzer, A limit theorem related to a new class of self-similar processes,, Z. Wahrsch. Verw. Gebiete, 50 (1979), 5. doi: 10.1007/BF00535672.

[25]

A. Krámli and D. Szász, Random walks with internal degrees of freedom. II. first-hitting probabilities,, Z. Wahrsch. Verw. Gebiete, 68 (1984), 53. doi: 10.1007/BF00535173.

[26]

S. Le Borgne, Examples of quasi-hyperbolic dynamical systems with slow decay of correlations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 125. doi: 10.1016/j.crma.2006.05.010.

[27]

G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17 (1991).

[28]

W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds,, Amer. J. Math., 91 (1969), 757.

[29]

W. Parry, Dynamical systems on nilmanifolds,, Bull. London Math. Soc., 2 (1970), 37.

[30]

C. R. E. Raja, On the existence of ergodic automorphisms in ergodic $\mathbbZ^d$-actions on compact groups,, Ergodic Theory Dynam. Systems, 30 (2010), 1803. doi: 10.1017/S0143385709000728.

[31]

K. Schmidt, "Lectures on Cocycles of Ergodic Transformations Groups,", Lect. Notes in Math., (1977).

[32]

K. Schmidt, Asymptotically invariant sequences and an action of $SL(2, \mathbbZ)$ on the 2-sphere,, Israel J. Math., 37 (1980), 193. doi: 10.1007/BF02760961.

[33]

K. Schmidt, On joint recurrence,, C. R. Acad. Sci. Paris S. I Math., 327 (1998), 837. doi: 10.1016/S0764-4442(99)80115-3.

[34]

Ye. Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups,, Ann. Inst. Fourier (Grenoble), 50 (2000), 833.

[35]

J. Tits, Free subgroups in linear groups,, J. Algebra, 20 (1972), 250.

[36]

K. Uchiyama, Asymptotic estimates of the Green functions and transition probabilities for Markov additive processes,, Electron. J. Probab., 12 (2007), 138. doi: 10.1214/EJP.v12-396.

[37]

Ya. B. Vorobets, On the uniform distribution of orbits of finitely generated groups and semigroups of plane isometries,, (Russian) Mat. Sb., 195 (2004), 17. doi: 10.1070/SM2004v195n02ABEH000799.

[38]

P. P. Varjú, Random walks in Euclidean spaces,, , ().

[39]

R. Zimmer, "Ergodic Theory and Semisimple Groups,", Monographs in Mathematics, 81 (1984).

show all references

References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs, 50 (1997).

[2]

J. Bourgain and A. Gamburd, Spectral gaps in $ SU(d)$,, C. R. Math. Acad. Sci. Paris, 348 (2010), 609. doi: 10.1016/j.crma.2010.04.024.

[3]

B. Bekka, P. de la Harpe and A. Valette, "Kazhdan's Property (T),", New Mathematical Monographs, 11 (2008).

[4]

B. Bekka and J.-R. Heu, Random products of automorphisms of Heisenberg nilmanifolds and Weil's representation,, Ergodic Theory Dynam. Systems, 31 (2011), 1277. doi: 10.1017/S014338571000043X.

[5]

B. Bekka and Y. Guivarc'h, On the spectral theory of groups of affine transformations on compact nilmanifolds,, , ().

[6]

L. Breiman, "Probability,", Addison-Wesley Publishing Company, (1968).

[7]

B. M. Brown, Martingale central limit theorems,, Ann. Math. Statist., 42 (1971), 59.

[8]

J.-P. Conze, Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications,, Ergodic Theory and Dynam. Systems, 19 (1999), 1233. doi: 10.1017/S0143385799141701.

[9]

J.-P. Conze and Y. Guivarc'h, Remarques sur la distalité dans les espaces vectoriels,, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 1083.

[10]

J. Dixmier and W. G. Lister, Derivations of nilpotent Lie algebras,, Proc. Amer. Math. Soc., 8 (1957), 155.

[11]

A. Furman and Ye. Shalom, Sharp ergodic theorems for group actions and strong ergodicity,, Ergodic Theory Dynam. Systems, 19 (1999), 1037. doi: 10.1017/S0143385799133881.

[12]

A. Gamburd, D. Jakobson and P. Sarnak, Spectra of elements in the group ring of $ SU(2)$,, J. Eur. Math. Soc. (JEMS), 1 (1999), 51. doi: 10.1007/PL00011157.

[13]

M. I. Gordin and B. A. Lifšic, Central limit theorem for stationary Markov processes,, (Russian) Dokl. Akad. Nauk SSSR, 239 (1978), 766.

[14]

Y. Guivarc'h, Equirartition dans les espaces homogènes,, (French) in, (1976), 131.

[15]

Y. Guivarc'h, Limit theorems for random walks and products of random matrices,, in, (2006), 255.

[16]

Y. Guivarc'h and J. Hardy, Théorémes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov,, Ann. Inst. H. Poincar Probab. Statist., 24 (1988), 73.

[17]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms,, Ergodic Theory Dynam. Systems, 24 (2004), 767. doi: 10.1017/S0143385703000440.

[18]

Y. Guivarc'h and C. R. E. Raja, Recurrence and ergodicity of random walks on locally compact groups and on homogeneous spaces,, Ergodic Theory and Dynam. Systems, 32 (2012), 1313. doi: 10.1017/S0143385711000149.

[19]

V. F. R. Jones and K. Schmidt, Asymptotically invariant sequences and approximate finiteness,, Amer. J. Math., 109 (1987), 91. doi: 10.2307/2374553.

[20]

V. Kaimanovich, The Poisson boundary of covering Markov operators,, Israel J. Math., 89 (1995), 77. doi: 10.1007/BF02808195.

[21]

S. A. Kalikow, $T,T^{-1}$ transformation is not loosely Bernoulli,, Ann. of Math. (2), 115 (1982), 393. doi: 10.2307/1971397.

[22]

D. A. Kazhdan, Uniform distribution on a plane,, (Russian) Trudy Moskov. Mat. Ob., 14 (1965), 299.

[23]

H. Kesten, Symmetric random walks on groups,, Trans. Amer. Math. Soc., 92 (1959), 336.

[24]

H. Kesten and F. Spitzer, A limit theorem related to a new class of self-similar processes,, Z. Wahrsch. Verw. Gebiete, 50 (1979), 5. doi: 10.1007/BF00535672.

[25]

A. Krámli and D. Szász, Random walks with internal degrees of freedom. II. first-hitting probabilities,, Z. Wahrsch. Verw. Gebiete, 68 (1984), 53. doi: 10.1007/BF00535173.

[26]

S. Le Borgne, Examples of quasi-hyperbolic dynamical systems with slow decay of correlations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 125. doi: 10.1016/j.crma.2006.05.010.

[27]

G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17 (1991).

[28]

W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds,, Amer. J. Math., 91 (1969), 757.

[29]

W. Parry, Dynamical systems on nilmanifolds,, Bull. London Math. Soc., 2 (1970), 37.

[30]

C. R. E. Raja, On the existence of ergodic automorphisms in ergodic $\mathbbZ^d$-actions on compact groups,, Ergodic Theory Dynam. Systems, 30 (2010), 1803. doi: 10.1017/S0143385709000728.

[31]

K. Schmidt, "Lectures on Cocycles of Ergodic Transformations Groups,", Lect. Notes in Math., (1977).

[32]

K. Schmidt, Asymptotically invariant sequences and an action of $SL(2, \mathbbZ)$ on the 2-sphere,, Israel J. Math., 37 (1980), 193. doi: 10.1007/BF02760961.

[33]

K. Schmidt, On joint recurrence,, C. R. Acad. Sci. Paris S. I Math., 327 (1998), 837. doi: 10.1016/S0764-4442(99)80115-3.

[34]

Ye. Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups,, Ann. Inst. Fourier (Grenoble), 50 (2000), 833.

[35]

J. Tits, Free subgroups in linear groups,, J. Algebra, 20 (1972), 250.

[36]

K. Uchiyama, Asymptotic estimates of the Green functions and transition probabilities for Markov additive processes,, Electron. J. Probab., 12 (2007), 138. doi: 10.1214/EJP.v12-396.

[37]

Ya. B. Vorobets, On the uniform distribution of orbits of finitely generated groups and semigroups of plane isometries,, (Russian) Mat. Sb., 195 (2004), 17. doi: 10.1070/SM2004v195n02ABEH000799.

[38]

P. P. Varjú, Random walks in Euclidean spaces,, , ().

[39]

R. Zimmer, "Ergodic Theory and Semisimple Groups,", Monographs in Mathematics, 81 (1984).

[1]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[2]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[3]

James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167

[4]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[5]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[6]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[7]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[8]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[9]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[10]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[11]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[12]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[13]

Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014

[14]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[15]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[16]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[17]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[18]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[19]

Yuri Kifer. Computations in dynamical systems via random perturbations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 457-476. doi: 10.3934/dcds.1997.3.457

[20]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]